
 1 

Chapter 3 

Computer Architecture 

 

Note by Dr. Abraham.  This chapter is being revised.  Updates will be posted. 

 

Introduction 

 

Computers could be made to handle analog or digital signals.  Today’s computers 

are digital and use two discrete signals such as on and off.  Every instruction to be 

implemented in a CPU, referred to as the instruction set, must be predetermined and the 

circuitry set up to execute  them.  The more the instructions in the set such as in the 

Complex Instruction Set Computers (CISC), the easier the life of the programmer, but, 

more complex and slower the machine.  Many of the instructions in a CISC machine can 

be replaced by multiple simpler instructions.  Such is the case in the Reduced Instruction 

Set Computers (RISC).  RISC favors a minimal number of instructions in the set.  The 

computer architecture is a branch of study that deals with designing of processors and 

their instruction sets, and organizing various components to facilitate most efficient 

communication between them without significantly increasing cost.  Modern processors 

are called microprocessors.  Each family of microprocessors has its own unique 

architecture and instruction set.  

 

A computer system consists of the input modules, the processing unit and the 

output modules.  There are some components that provide for both input and output, such 

as the primary and secondary memories. The processor obtains the instructions to execute 

from the memory.  These instructions are stored in the memory by the operating system 

when a program is loaded.  The processor itself has three basic functional units,  

arithmetic logic unit (ALU), control unit, and the registers.  The CPU reads one 

instruction at a time from the memory, decodes that instruction, fetches any data that is 

needed based on the decoded instruction, executes that instruction and writes the results 

back.  In as much as the digital computers use zeros and ones or binary digits (Bits) the 

readers are encouraged to explore binary mathematics as well as basics of Boolean 

algebra.  A brief introduction to these subjects are given here.   

 

Binary numbers 

 

Binary numbers are much easier to use than the decimal system, but it appears more 

difficult because we are used to the decimal system.  In the decimal system we have to 

keep track of ten symbols whereas in binary we will only have two know two symbols, 0 

and 1.  The next higher number to 1 in binary is a 0 with a carry of 1.  The sequence from 

0 to 15 decimal goes like this in binary: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 

1010. 1011, 1100, 1101, 1110, 1111.   It follows that if have a bank of 4 switches we can 

turn the off or on to represent this set of numbers.  If we had 8 switches we could 

represent all unsigned integers from 0 to 255.  Most computers use a byte (8 bits) as one 

unit.  Multiple bytes called a “word” can be addressed together as well. A word size is 

generally the size of the registers found in the CPU (discussed later).   In order to 

calculate the value of 11110101 in decimal we start with the right most digit and move to 



 2 

the left multiplying the number (0 or 1) at each digit with the digit value.  The digit value 

is the digit position from right to left raised to the power of two.  The rightmost bit is 

called the least significant bit (LSB) and the left most bit is the most significant bit 

(MSB). 

 

 

�umber from 

right to left 

Digit value Value 

1 1 1 x 1 =        1 

0 2 0 x 2 =        0 

1 4 1 x 4 =        4 

0 8 0 x 8 =        0 

1 16 1 x 16 =    16 

1 32 1 x 32 =    32 

1 64 1 x 64 =    64 

1 128 1 x 128 = 128 

 Total 245 

 

Conversion from decimal to binary can be achieved by performing sequence of integer 

division and modulus operations. For example, to convert decimal 9 to binary, perform an 

integer division of 9 by 2, giving a 4 with a remainder of 1.  This 1 will be the right most 

bit (least significant bit) in the binary number.  Now continue the integer division of 4 

with 2 and you have a 2 with a remainder of 0.  This 0 will be the next digit holder in the 

binary.  Divide the 2 with a 2 and you have a 1 and a remainder of 0.  The 1 will be the 

left most digit (most significant bit) and the 0 next to it.  The binary number will be 1001.  

Here is another example: 

 

Convert decimal 127 to binary: 

 

Integer Division    Binary Number 

 

127 \ 2 = 63 R 1 

63 \ 2   = 31 R 1 

31 \ 2   = 15 R 1 

15 \ 2   = 7 R 1 

7  \ 2    =  3 R 1 

3 \ 2     = 1 R 1 

1 \ 2     = 0 R 1   

 

Convert decimal 64 to binary 

 

Integer Division    Binary Number 

 

64 \ 2 = 32 R 0 

32 \ 2   = 16 R 0 

       1 

      1 1 

     1 1 1 

    1 1 1 1 

   1 1 1 1 1 

  1 1 1 1 1 1 

 1 1 1 1 1 1 1 

       0 

      0 0 

     0 0 0 



 3 

16 \ 2   = 8 R 0 

8 \ 2     = 4 R 0 

4  \ 2    =  2 R 0 

2 \ 2     = 1 R 0 

 

Principles of addition and subtractions are the same as in the decimal system: addition 

involves carrying a one when adding 1+1, and subtraction involves borrowing a 1 when 

subtracting 1 from a 0.  Let us perform addition and subtraction on 11010 and 01111.  

The carry is indicated by a left or right arrow depending on the direction of the borrow. 

 

Addition: 

 

 1       1       0     1    0  = 26 

 0       1       1     1    1  = 15 

--------------------------------            ------ 

      1   0       1      0     0    1  = 41 

 

Subtraction: 

 

1       1       0     1    0  = 26 

         0       1       1     1    1  = 15 

--------------------------------            ------ 

         0       1       0     1    1  =    11 

 

 

The discussion on binary numbers thus far only dealt with unsigned integers.  In 

order to represent a signed number in a computer a method has to be devised to indicate 

the sign.  Examples of such methods are, signed-magnitude, ones-complement, and twos-

complement.   In signed magnitude the most significant bit (MSB) is set aside to indicate 

the sign, zero for positive and 1 for negative.  The ones-complement is obtained by 

complementing the bits.  The MSB of a negative number will begin with a one and a 

positive number with a zero. 0011 will represent +3 and 1100 (complement of the 

positive 3) will represent -3.  Ones-complement allows for simpler arithmetic 

manipulation circuitry, but the number zero has two different representations.  In twos-

complement a negative number is represented by complementing the bits of the positive 

number and adding a 1.  In all three representations the positive numbers are represented 

the same way.  In twos complement a +3 represented as 0011 and a –3 is represented as 

1101 (complement of 0011 is 1100, and add a 1).  Deciphering a twos-complement 

number is done as follows.  If a binary number’s MSB is a zero then it is a positive and 

no further action is necessary.  If the MSB is 1, it is a negative number.  Suppose the 

number is 10000001, we know it is a negative number.  Complement the bits and add a 1, 

we get 01111110 +1 = 01111111 which is 127.  The sign is already determined to be 

negative it is –127. 

 

Everything in a digital computer must be represented in the binary format.  This 

implies that a specific binary sequence must be established for representing the alphabets, 

    0 0 0 0 

   0 0 0 0 0 

  1 0 0 0 0 0 



 4 

numeric symbols and other special symbols that are in use in English as well as other 

languages of the world.  Similar decision must be made on how images will be 

represented in the binary format.  An agreement was reached in 1968 to represent all 

English alphabets using a particular sequence of zeros and ones, and this coding scheme 

is known as the American Standard Coding for Information Interchange (ASCII).  If a 

program can export information into ASCII format then another program can import it.  

The standard ASCII character set consists of 128 decimal numbers ranging from zero 

through 127 assigned to letters, numbers, punctuation marks, and the most common 

special characters. The Extended ASCII Character Set also consists of 128 decimal 

numbers and ranges from 128 through 255 representing additional special, mathematical, 

graphic, and some foreign characters.  The first 32 (0 to 31) ASCII codes are for special 

purposes such as line feed, carriage return, form feed, bell, etc.  The ASCII can only 

represent languages that use Roman Alphabets such as English.  A more recent standard, 

the Unicode provides a unique number for every character regardless of the platform, the 

program, or the language.  Now every alphabet of every language can be represented in a 

computer. To represent an ASCII character we need 7 bits and an extended ASCII 

character requires 8 bits; therefore, we set aside a byte for it and a byte happens to be the 

smallest addressable memory unit.  Unicode uses two bytes to represent one character.  

This means we can have 65,536 possible symbols in a given alphabet.   Another encoding 

scheme that IBM mainframes used is the Extended Binary Coded Decimal Interchange 

Code (EBCDIC). 

 

Other numbering schemes 

 

Since the basic addressable memory unit is a byte an octal (base eight) makes 

sense and some early computers used the octal system.  Octal numbering system uses 8 

symbols, 0 to 7.  The next number after 7 is 10.   Hexadecimal (base 16) numbers give 

more compactly written numbers and programmers use it very often.  It uses 15 symbols 

0-9 and A-F.  The A stands for decimal 10, B for 11, C for 12, D for 13, E for 14 and F 

for 15.  These 15 symbols can be represented using four bits or a nibble.   For example , 

1111 will represent F (decimal 15).    Two hexadecimal digits can be represented in one 

byte; FF representing 255.  In hexadecimal, after the F, the next number is 10 (decimal 

16).  

 

Boolean Operations 

 

The mathematics used in digital systems is the special case of Boolean Algebra in which 

the variables only assumes only two values (0 or 1).  The basic operations of Boolean 

Algebra are: NOT, AND, OR, XOR, NAND and NOR. 

 

 

NOT Gate 

 

The NOT operation gives the inverse (complement) of a Boolean variable.  For example 

NOT(True) is false. 

 



 5 

 
If X is the input values to the Gate and Y is the Output 

 

Then Y is been calculated as = X
 

 

 

 

Truth Table for �OT Gate 

 

X Y 

0 1 

1 0 

 

 

 

AND Gate  

 

The AND operation is a logical multiplication. An example of an AND operation is, IF 

US CITIZEN AND AGE GREATER THAN EQUAL TO 18 THEN ELIGIBLE TO 

VOTE.  There are two inputs, citizenship and age, and one output, voting eligibility, in 

this example.  Both inputs and the output may assume only true or false.  In a situation 

where a person is a US citizen and 20 years of age, the inputs will be TRUE  and 

TRUE.  The output also will be TRUE.  If one or both of the inputs are FALSE then the 

output will be FALSE. 

 
 

 

 

 
 

 

 



 6 

This is a two input AND gate.  A and B are the input values to the AND Gate and Y is 

the output.  TheY is been calculated as Y = A.B.  The table formed using the different 

combinations of the inputs is known as the Truth Table.  

 

Truth Table for A�D gate 

 

A B Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

OR Gate  

 

 

The OR operation is a local addition.  An example of an OR operation is: If grade == 90 

or grade >90 then Grade = ‘A’.  In an OR operation only one condition has to be true for 

the output to be true. 

 

 

 

 
 

If A and B are the Input values to the Gate and Y is the Output 

 

Then Y is been calculated as Y = A + B  

 

 

Truth Table for OR Gate 

 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

  



 7 

 

 

 

 

 

 

XOR Gate  

 

 

 
 

 

If A and B are the Input values to the Gate and Y is the Output 

 

Then Y is been calculated as Y= BABA +  

 

Truth Table  

 

 

 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

�A�D Gate  

 

 
 

If A and B are the Input values to the Gate and Y is the Output 

 

Then Y is been calculated as Y= A.B   

 

 

 

 

Truth Table  

 



 8 

A B Y 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

 

�OR Gate 

 

 
If A and B are the Input values to the Gate and Y is the Output 

 

Then Y is been calculated as Y= BA +  

 

Truth Table  

 

A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

 

 

 

XNOR gate  

 

 
 

   (1 ⊕⊕⊕⊕ 0)’
 

 

 

If A and B are the Input values to the Gate and Y is the Output 

 

Then Y is been calculated as Y= BABA +  

Truth Table  

 

A B Y 

0 0 1 

0 1 0 



 9 

1 0 0 

1 1 1 
 

 

 

Associative Law  
 

(A·B)·C = A·(B·C) = A·B·C 

(A+B)+C = A+(B+C) = A+B+C 

 

Distributive Law  
 

A·(B+C) = (A·B) + (A·C) 

 

Commutative Law  
 

A·B = B·A 

A+B = B+A 

 

Precedence  
 

AB = A·B 

A·B+C = (A·B) + C 

A+B·C = A + (B·C) 

 

DeMorgan's Theorem  
 

A.B   = A  + B    (NAND) 

BA +  = A · A    (NOR) 

 

 

 

Given below is a C++ program to emulate a half-adder. 

 

#include <iostream.h> 

 

void main() 

{  

 short x,y, sum, carry; 

 bool a,b,c,d; 

 cout <<"Enter two bits to add seperated by a space ";cin >> x>>y; 

 a=x==1; b=y==1;  //actually c++ assigns 0 for false and 1 for true, we could have 

read these directly; 

 c=(a||b) && !(a&&b);  

 d=(a&&b); 

 sum=c?1:0; //if c is true then sum gets 1 else sum gets 0 



 10 

 carry=d?1:0; 

 cout <<x <<"+"<<y <<"="<<carry<<sum<<endl; 

 if (a = true) cout <<"it is true"; 

 if (a) cout << "it is ture"; 

  

} 

 

Computer Programming Languages: 

Computers perform operations such as moving data and data manipulation by activating 

switches and gates.  Instructions to do that also must be given in the form of 1s and 0s or 

on and off.    When we program computers using just ones and zeros we are using the 

“machine language”.  Indeed the computers were programmed this way until a machine 

language program was written to translate English sounding symbols into zeros and ones.  

Such a program is called the Assembler.  One assembly language instruction will be 

translated into one machine instruction.  The high level language compilers such as C++ 

and Visual Basic translate one high level instruction to several machine level instructions. 

 

Structure of a Microprocessor 

 

International Business Machines (IBM) used the Intel-8088 microprocessor in 

their first personal computer (PC) introduced in 1981.  A microprocessor has two 

functional units, the execution unit (EU) and the bus interface unit (BIU).  The EU 

consists of the control logic for decoding and executing instructions, an ALU for 

performing arithmetic and logic operations and a set of general purpose registers. The 

BIU contains control logic that controls all external bus operations.  A bus is a set of 

wires that connects the various components of a computer together and transfers signals 

and data between them.  The number of lines a bus has depends on the architecture of the 

microprocessor and is directly proportional to the CPU speed. 

 

A block diagram of a hypothetical microprocessor is given in Fig____.   This diagram 

shows the PC- Program Counter, MBR- Memory Buffer Register, MAR- Memory 

Address Register, ALU- Arithmetic Logic Unit, IR- Instruction Register, and the General 

Purpose Registers. This block diagram also shows the address bus, data bus and the 

control bus going out of the CPU. The interconnections (bus) connect components inside 

the CPU (internal bus) and components external to the CPU (external bus). There are 

three different functions for the bus, memory address transfers, data transfers and control 

signal transfers.  One set of physical wires may handle all three operations one at a time, 

or there may be different sets of wires for each, the address bus, data bus and the control 

bus.   

 

 

 

 

 



 11 

M

I

C

R

O

P

R

O

C

E

S

S

O

R

M

E

M

O

R

Y

Address Bus

I/O

Data Bus

Control Bus

ALU

MBR

IR

CONTROL 

UNIT

External Control Bus

PC MAR External Address Bus

External Data Bus

GENERAL 

PURPOSE 

REGISTERS

Internal Data Bus
Internal Address Bus Internal Control Bus

BLOCK DIAGRAM OF A MICROPROCESSOR

 

 

Fig: 1 

 

 The CPU makes extensive use of the registers, the fastest storage available to the 

CPU, when fetching, decoding, and executing instructions. When a program begins 

execution, the program counter (PC, a register inside the CPU) has the address of the next 

instruction to fetch; this address is placed there initially by the operating system and 

updated automatically by the CPU.  There are three additional registers, the instruction 

register (IR), memory address register (MAR) and the memory buffer register (MBR) 

that work together to fetch the instruction.  The address from the PC is moved to the 

MAR. The reason for this is that the address bus is connected to the MAR and all 

addresses issued must go through this register.  Then the address contained in the MAR is 

placed on the address bus and the READ line is asserted on the control bus.  The memory 

whose address is found on the address bus places its contents on the data bus. The only 

register that is connected to the data bus is the MBR, and all data should go in an out 

through this register.  Thus the data on the data bus is copied into the MBR.  The 

instruction is now copied on to the IR to free up the MBR to handle another transfer.  The 

contents of the PC will be now incremented by one instruction.  The instruction is then 

decoded and executed as described later in this chapter.  In practice, more than one 

instruction is read during an instruction cycle.  Additional instructions are kept in 

temporary storage registers such as the Instruction Buffer Register (IBR).  Those registers 

hold memory address will be large enough to hold the maximum addressable memory 



 12 

and the those registers that hold instruction or data will be as large as the word size of the 

memory. 

 

 In actuality, the logical address found inside the PC may be converted to actual 

physical address by a memory management unit (MMU).  This allows flexibility of 

relocating a program.  For example, a physical address may be computed by adding the 

contents of a base register such as the CS, and an offset register such as the BX.  There 

may also be a relocation register involved as well. 

 

 Additional registers that are found in the CPU are Stack Pointer (SP), Index 

Register (XR), Processor Status Register (XR), and Data Registers (DRs).  A stack is a 

certain portion of the memory that keeps track of subroutine calls and other information. 

The SP contains the address of the top of that memory.  The index register keeps track of 

arrays.  The processor status register is used to record conditions that occur within the 

CPU such as an overflow.  The data registers are the general purpose registers that a 

programmer uses to store data that are being manipulated by the CPU.  Data from the 

memory will be brought into these registers to be manipulated by the CPU.  The results 

of ALU operations will be stored in these data registers before being written back to the 

RAM. 

 

 

Operations of a microprocessor 

  

The power of a CPU is sometimes quantified by addressing capability or by how 

many bits of data that can be transferred during a fetch. If we say that the hypothetical 

processor is 16 bit, then 16 bits of data should be transferred at the same time. The power 

of the CPU is also denoted by the speed in which the data is transferred. We will now 

analyze the working of the hypothetical processor. 

 

The size of the PC depends on the number of address lines of the CPU. Let us 

assume that the CPU has 16 address lines. Then the PC should be able to address 162  

locations, which is equal to 65,536. Initially the CPU starts its operation based on the 

contents of the PC. Assume that initially the PC contains the value 0000h where “h” 

stands for hexadecimal notation. 

 

The Fetch Cycle: 

 

The address of the next instruction contained in the PC is transferred to the MAR .  

MAR places this address on the address bus and the corresponding memory places its 

contents on to the data bus.  The MBR is connected to the data bus and it receives the 

instruction or the data contained in that address.  At the start up, the CPU performs an 

instruction fetch. Instruction fetch involves reading the instruction stored in the memory. 

The location from which the instruction is read is derived from the PC.  A summary of 

the instruction fetch is given below: 

 

MAR � [PC] 



 13 

MBR � [Memory] 

PC    � [PC] +1 

IR     � [MBR] 

 

 

 

The Decode Cycle: 

 

An instruction will have an opcode and none, one or more operands (data to 

operate on).  The opcode is the operation performed by the CPU.  The number of bits 

assigned to the opcode will determine the maximum number of instructions that 

processor is allowed to have.  For example, suppose that the length of an instruction 

(opcode and operand) is 16 bits, 4 bits are allocated for the instructions and the remaining 

12 bits are allocated for an operand.  Four bits can give us a maximum of sixteen 

instructions (4
2
).  Each of these 16 bit patterns, ranging from decimal 0 to 15, or binary 0 

to 1111, or hexadecimal 0 to F will stand for a particular instruction.  For illustration 

purposes, an imaginary computer may have the following instruction set: 

 

Bin Dec Hex Instruction Explanation 

 

0000 0 0 LD  load    

0001 1 1 ST  store   

0010 2 2 A  add     

0011 3 3 AI  add immediate 

0100 4 4 S  subtract 

0101 5 5 SI  subtract immediate 

0110 6 6 M  multiply 

.. 

.. 

1111 15 F J  jump 

 

This hypothetical computer has only one user addressable register, which is the 

accumulator (AC).  When a load (LD) is executed, the contents of the register as 

indicated by the operand is brought into the AC, the reverse happens in a store (ST).  

When an add (A) is executed, the value contained in the memory location as indicated by 

the operand is added to the contents of the AC, and the result is placed back in the AC.  

The add immediate (AI) differs from the add (A) in that the operand is what is added, not 

the content of the memory pointed by the operand.  

 

Suppose a program that is already in execution has arrived at a point that it needs 

to handle these two statements: B = B + A and C = B + 2.  Also suppose that the variable 

A is kept in memory location 200h, the variable B in 201h, and the variable C in 202h.  

The values in each are 5, 3 and 0 respectively.  The code segment for this section of the 

program is given in figure 2.  This figure shows the memory location of each instruction, 

assembly mnemonics of each instruction and its equivalent machine code. 

 



 14 

 

 

Memory 

Location 

Instruction Machine 

code in Hex 

Description of Instruction 

100h LD A 0200 Load variable  A from the memory 

to the accumulator 

101h A B 2201 Add accumulator with the variable 

B  

102h ST B 1201 Store the value in accumulator to 

memory 

103h AI 2 3002 Add accumulator with 2 

104h ST C 1202 Store the value in accumulator to 

memory 

Figure 2 

 

 

There are three registers that need watching, the Accumulator (AC), Program 

Counter (PC), and the Instruction Register (IR).  The PC contains 100h, which means that 

the next instruction should be fetched from memory location 100 hexadecimal.  The 

control unit fetches the instruction contained in the address indicated by the PC, which is 

100h.  Please refer to figure 3, step 1. The instruction 0200 is brought into the IR.  The IR 

now contains 0200.  The instruction is decoded and separated into the opcode of 0h and 

operand of 200h.   Recall that this is based on the assumption that 4 bits (one 

hexadecimal digit) are used for the opcode and 12 bits (three hexadecimal digits) are used 

for the operand.  Once the instruction is fetched the PC is automatically incremented, and 

now contains 101h.  The opcode 0 indicates a load, and the operand is fetched from 

memory location 200h and loaded into the accumulator (AC).  Now the accumulator 

contains 5. See step 2 of figure 3. 

 

 

Memory  
CPU 

register 
Memory  CPU register 

100 0200  100 PC 100 0200  101 PC 

101 2201  000 AC 101 2201  0005 AC 

102 1201  0200 IR 102 1201  0200 IR 

103 3002    103 3002    

104 1202    104 1202    

          

. .    . .    

. .    . .    

200 0005    200 0005    

201 0003    201 0003    

202 0000    202 0000    

Step 1     Step 2     

Figure 3 



 15 

 

 

 

 

 

 

Next, the instruction from 101h is fetched and placed in the IR. Please refer to 

figure 4, step 3.  The PC is incremented to 102h. The content of IR is decoded and based 

on the opcode of 2h, the operand located in address 201h is added to the AC.  The AC 

now has a value of 8 (figure 4, step 4).   

 

 

 

Memory  
CPU 

register 
Memory  

CPU Register 

100 0200  101 PC 100 0200  102 PC 

101 2201  005 AC 101 2201  0008 AC 

102 1201  2201 IR 102 1201  2201 IR 

103 3002    103 3002    

104 1202    104 1202  5+3=8  

          

. .    . .    

. .    . .    

200 0005    200 0005    

201 0003    201 0003    

202 0000    202 0000    

Step 3     Step 4     

Figure 4 

 

The next instruction whose address is contained in the PC is fetched and placed in 

the IR giving it a value of 1201. Please refer to Figure 5 step 5. The PC is incremented to 

103h.  The contents of IR (1201) is decoded and based on the opcode of 1h, the contents 

of the AC is saved in the address indicated by the operand, which is 201h.    Address 201 

(variable B) now has a value of 8 (Figure 5, step 6).   

 

 

 

Memory  
CPU 

register 
Memory  CPU Register 

100 0200  102 PC 100 0200  103 PC 

101 2201  008 AC 101 2201  0008 AC 

102 1201  1201 IR 102 1201  1201 IR 

103 3002    103 3002    

104 1202    104 1202    

          



 16 

. .    . .    

. .    . .    

200 0005    200 0005    

201 0003    201 0008    

202 0000    202 0000    

Step 5     Step 6     

Figure 5 

 

 

 

Next, the instruction contained in 103h (PC content) is fetched next and placed in 

the IR giving it a value of 3002. See Figure 6, step 7.  The PC is incremented to 104h The 

contents of IR is decoded, and  the opcode of 3h is an add immediate.  No data fetching is 

necessary and the 2 is added to the AC.  The new value of the accumulator is now Ah or 

decimal 10. (Figure 6, step 8). 

 

 

 

Memory  
CPU 

register 
Memory  CPU Register 

100 0200  103 PC 100 0200  104 PC 

101 2201  008 AC 101 2201  000A AC 

102 1201  3002 IR 102 1201  3002 IR 

103 3002    103 3002    

104 1202    104 1202    

        8+2  

. .    . .    

. .    . .    

200 0005    200 0005    

201 0003    201 0008    

202 0000    202 0000    

Step 7     Step 8     

Figure 6 

 

The last instruction is now fetched and placed in IR.  Please refer to Figure 7. The 

PC is incremented to 105h.  The PC now contains 1202, and it is decoded to give the 

opcode of 1h and operand of 202.  Since hex 1 is a store, the value of AC (the value is 

Ah) is stored in memory location 202h.  It was already mentioned that 202h is the 

memory location assigned to C. 

 

Memory  
CPU 

register 
Memory  CPU Register 

100 0200  104 PC 100 0200  105 PC 



 17 

101 2201  00A AC 101 2201  000A AC 

102 1201  1202 IR 102 1201  1202 IR 

103 3002    103 3002    

104 1202    104 1202    

          

. .    . .   
 

. .    . .    

200 0005    200 0005    

201 0003    201 0008    

202 0000    202 000A    

Step 9     Step 10     

Figure 7 

 

 

 

From the above operations one can see that defining the CPU instruction set is a difficult 

task. First the architect will have to decide the size of the address bus and data bus.  From 

this the instruction format is derived and the instruction set is defined.  The operation of a 

computer in executing a program consists of a sequence of instruction cycles with one 

machine instruction per cycle. Each instruction cycle is made up of smaller units.  The 

function of the smaller units can be considered as fetch, indirect, execute and interrupt. 

The control unit carries out these instructions.  The control unit accomplishes these steps 

using micro-programs and micro-operations.  The elements of the program execution are 

shown in the figure. 

 



 18 

Program execution

Instruction cycle Instruction cycle Instruction cycle

IndirectFetch Execute Interrupt

OPµOPµOPµ OPµ

 
Fig: 5 

Fetch Cycle: 

A fetch cycle works as shown in figure 2. The proper sequence of events must be 

followed. Thus (MAR (PC)) must precede (MBR Memory) because the memory read 

operation makes use of the address in the MAR. 

 

Conflicts must be avoided. One should not attempt to read to and write from the same 

register in one time unit, because the results would be unpredictable. For e.g. the 

microperations (MBR Memory) and (IR MBR) should not occur during the same time 

unit. Once an instruction is fetched then it fetches the source operands. If there is an 

indirect addressing involved then it moves to the indirect cycle. If it is a direct  

 

Indirect cycle 

 

When there is an indirect addressing to be performed, then an indirect cycle must precede 

the execute cycle. The dataflow is given below 

 

 

  

))((

))((

AddressMBRIR

MemoryMBR

AddressIRMAR

←

←

←

 

 



 19 

Fig: 6 

 

The address field of the instruction is transferred to the MAR. 

 

Execute cycle 

 

This cycle depends on the opcode.  For example, for the instruction ADD R1, X, the 

following sequence will occur. 

 

)()1(1

))((

MBRRR

MemoryMBR

AddressIRMAR

+←

←

←

 

 

Fig: 7 

 

Here the execution begins with the IR containing the ADD instruction. Initially the 

address portion of the IR is loaded into the MAR. Then the referenced memory location 

is read. The contents of R1 and MBR are added by the ALU.  

 

Interrupt cycle 

 

At the end of the execute cycle a test is made to determine whether any enabled interrupts 

have so occurred. If so the interrupt cycle occurs. The nature of the interrupt cycle varies 

from machine to machine. A simple illustration is given below 

 

)(

_

_

)(

MBRMemory

addressRoutinePC

addressSaveMAR

PCMBR

←

←

←

←

 

 

Fig: 8 

 

Based on the approach explained above we can generate a flow chart for instruction cycle 

as given below, ICC is an instruction cycle code register. Based on the contents of the 

ICC register we can determine what type of instruction is to be done. An e.g. is given 

below 

 

00: Fetch 

01: Indirect 

10: Execute 

11: Interrupt 

 

 

 



 20 

 
 

 

Fig: 9 

 

We have analyzed the behavior or functioning of the processor into minute operations 

called micro operations. These microperations are the functional requirement of the 

control unit of a microprocessor. Based on the studies we have conducted we have to do 

the following steps initially for designing a microprocessor 

 

1. Define the basic elements of the processor 

2. Describe the micro operation 

3. Determine the functions that the control unit must perform. 

 

The basic elements of a processor are ALU, registers, internal paths and external data 

paths and now we have the control unit. Registers are used to store data internal to the 

processor. Internal data paths are used to move data between registers and between 

register and ALU. External data paths link registers to memory and I/O modules. 

External data paths are otherwise known as system bus. The control unit causes 

operations to happen within the processor. 

 

The micro-operations are summarized to the following categories 

 

Transfer data from one register to another. 

Transfer data from a register to an external interface 

Transfer data from an external interface to a register 

Perform an arithmetic or logic operation, using registers for input and output. 

 



 21 

How control signals are generated? 

We have defined the elements that make up the processor (ALU, registers, data 

paths) and the micro-operations that are performed. For the control unit to perform its 

function, it must have inputs that allow it to determine the state of the system and outputs 

that allow it to control the behavior of the system. These are the external specifications of 

the control unit. Internally, the control unit must have the logic required to perform its 

sequencing and execution functions. Let us discuss about the interaction between the 

control unit and the other elements of the processor. Figure 10 is a general model of the 

control unit, showing all of its inputs and outputs.  

 

Clock: The control unit keeps track of its operations using the clock. The control unit 

causes one micro-operation (or a set of simultaneous micro-operations) to be performed 

for each clock pulse. This is sometimes referred to as the processor cycle time, or the 

clock cycle time. 

     

Instruction register: The opcode of the current instruction is used to determine which 

micro-operations to perform during the execute cycle. 

 

Flags: Flags can be considered as single bit registers. These are needed by the control unit 

to determine the status of the processor and the outcome of previous ALU operations. For 

example, for the increment-and-skip-if-zero (ISZ) instruction, the control unit will 

increment the PC if the zero flag is set. 

 

 
 

 

Fig: 10 

 

Control signals from control bus: The control bus portion of the system bus provides 

signals to the control unit, such as interrupt signals and acknowledgements. There are two 



 22 

types of Control signals 1) Control signals within the processor 2) Control signals to 

control bus. Control signals within the processor are of two types. They are controls 

signals to move data moved from one register to another and those that activate specific 

ALU functions. Control signals to the control bus are for memory read and write, and 

control signals to the I/O modules. 

 

   Three types of control signals are used: those that activate an ALU function, those that 

activate a data path, and those that are signals on the other external system bus or other 

external interface. All of these signals are applied directly as binary inputs to individual 

logic gates. 

 

Let us see how a fetch cycle works. The control unit keeps track of where it is in the 

instruction cycle. At a given point, it knows that the fetch cycle is to be performed next. 

The first step is to transfer the contents of the PC to the MAR. The control unit does this 

by activating the control signal that opens the gates between the bits of the PC and the 

bits of the MAR. The next step is to read a word from the memory into the MBR and 

increment the PC. The control unit does this by sending the following signals 

simultaneously: 

    A control signal that opens gates, allowing the contents of the MAR onto the address 

bus. A memory read control signal on the control bus will generate a control signal that 

opens the gates, allowing the contents of the data bus to be stored in the MBR. Next it 

will generate control signals to logic that add 1 to the contents of the PC and store the 

result back to the PC. Following this, the control unit sends a control signal that opens 

gates between the MBR and the IR. This completes the fetch cycle except for one thing. 

The control unit must decide whether to perform an indirect cycle or an execute cycle 

next. To decide this it examines the IR to see if an indirect memory reference is made. 

The indirect and interrupt cycles work similarly. For the execute cycle, the control unit 

begins by examining the opcode and, on the basis of that, decides the sequence of micro-

operations to perform for the execute cycle. 

     

Control Signals Example 

     

To illustrate the functioning of the control unit, let us examine a simple processor 

 



 23 

 
 

Fig: 11 

This is a simple processor with a single accumulator. The data paths between elements 

are indicated. The control paths for signals from the control unit are not shown, but the 

terminations are labeled iC and indicated by a circle. The control unit receives inputs 

from the clock, the instruction register, and flags. With each clock cycle, the control unit 

reads all of its inputs and emits a set of control signals. Control signals go to three 

separate destinations: 

Data paths: The control unit controls the internal flow of data. For example, on the 

instruction fetch, the contents of the memory buffer register (MBR) are transferred to the 

instruction register (IR). For each path to be controlled, there is a gate (indicated by a 

circle in the figure). A control signal from the control unit temporarily opens the gate to 

let data pass. 

     

ALU: The control unit controls the operation of the ALU by a set of control signals. 

These signals activate various logic devices and gates within the ALU. 

 

System bus: The control unit sends control signals out onto the control lines of the system 

bus (e.g., memory READ). 

The control unit must maintain knowledge of where it is in the instruction cycle. Using 

this knowledge, and by reading all of its inputs, the control unit emits a sequence of 

control signals that causes micro-operations to occur. It uses the clock pulses to time the 

sequence of events, allowing time between events for signal levels to stabilize. Table 14.1 

indicates the control signals that are needed for some of the micro-operation sequences 

described earlier. For simplicity, the data and control paths for incrementing the PC and 

for loading the fixed addresses into the PC and MAR are not shown. 

 



 24 

 

Micro-operation Timing Active control signal 

Fetch MAR ← (PC) 

MBR ← (memory) 

PC ← (PC)+1 

 

IR ← (MBR) 4

5

2

,

C

CC

C

R
 

Indirect: MAR ← (IR(Address)) 

MBR ← (memory) 

IR(Address) ← (MBR(Address)) 
4

5

8

,

C

CC

C

R  

Interrupt: MBR ← (PC) 

MAR ← Save_address 

PC ← Routine_address 

Memory ← (MBR 
WCC

C

,12

1

 

 

 

Fig: 12 

 

Internal Processor Organisation 

Fig: 13 explain an internal processor bus. The ALU and all processor registers are 

connected by a single internal bus. Gates and control signals are provided for movement 

of data onto and off the bus from each register.  X and Y are two new registers other than 

mentioned above used for temporary storage. ALU cannot be used for storing any value. 

As soon as the ALU performs its function the output is available on the bus 



 25 

 
 

Fig: 13 

 

Design of Control Unit 

 

The Control unit can be designed using hardware logics or by using a control memory. In 

hardware type of design the logics are designed using basic building digital circuits like 

AND, OR, NOR etc. The signals to the iC  are generated using the Opcode. The hardware 

design can be generated by implementing Truth Table, K-maps and also using State 

machine.  The implementation of hardware type of control logic is expensive, but faster. 

The second method is to use a control memory. In this case we have to program the 

control memory. This method is called microprogramming. A simple example of 

programming the control memory is shown below 

 

Opcode Control Outputs 

    

4

5

2

,

C

CC

C

R
 

4

5

2

,

C

CC

C

R
 

4

5

2

,

C

CC

C

R
 

4

5

2

,

C

CC

C

R
 

4

5

2

,

C

CC

C

R
 

0 0 0 0 1 0 0 0 0 



 26 

0 0 0 1 0 1 0 0 0 

0 0 1 0 0 0 1 0 0 

0 0 1 1 0 0 0 1 0 

0 1 0 0 0 0 0 0 1 

 

 

 

The table contained in the Cs will be stored in the control memory which is called 

microcode storage. 

 

 

Microprogram Counter

Address Select Logic

Adder

1

MICROCODE

STORAGE

Opcode

Control Outputs

Sequencing Control

 

The micro program is directly stored in the memory. The micro program counter 

determines the next microinstruction. The combination of the current micro program 

counter, incrementer, dispatch tables and address select logic forms a sequencer that 

selects the next microinstruction. The microcode can be implemented using ROM, or 

PLA (Programmable Logic Array). The sequential control is implemented using finite 

state machine which. Design of a state machine is an entirely different subject. 



 27 

 
 

 

Next we will discuss the various stages of a simple program control. This figure is based 

on a different architecture and different instruction format. The Architecture is almost 

similar to the hypothetical microprocessor. Here the address lines, data lines and control 

lines are shown more explicitly. Let us implement the instruction  

ADD A, B 

 This instruction performs the operation addition where the contends of the register A is 

added to the contends of Register B and stored in the Register B. Here we have to do an 

instruction fetch, decode and execute cycle. There is only one fetch operation (different 

from the way which the accumulator architecture was discussed) 

 

 

 

 

 

 

 

 

 

 



 28 

 

The instruction format is as follows 

 

 

 

 

 

 

 

In the above instruction there is no memory fetch and hence memory write is not taking 

place. 

 

 

 

P

C

M

E

M

O

R

Y

M

U

X

M

D

R

A

B

A

L

U

Ins 4 bits

Inst 4 bits

Inst 4 bits

M

U

X

M

U

X

M

U

X

M

U

X

M

U

X

C

O

N

T

R

O

L
IR W

OPCODE

MR

MW

ADDR

16

4

4

4

A

B

RS

W

16

NPC

1

Jump/

Intt

ALU A

ALU B

M to Reg

PCW

IR

W DATA

16

ADD A,B Instruction fetch

NPC

ALU Enable

Indirect 

 

 

 

During Instruction fetch only the signals marked with red color are active.  The operation 

starts with PC. The PC will generate a 16 bit address. The MUX will select only the 

address from PC since it is an instruction fetch (Control signal is Indirect). (The address 

from the ALU will be selected when there is an indirect addressing). Then there is a 

Memory read enable signal (Control signal is Memory Read: MR). The data read from 

Opcode 4 bits            Reg 1 4 bits     Reg 2 4 bits 



 29 

the memory is written into the Instruction register enabled by the control signal IRW. 

Now the instruction register have the contends for the next stage which is Decode stage. 

 

 

 

 

P

C

M

E

M

O

R

Y

M

U

X

M

D

R

A

B

A

L

U

Inst  4 bits

Inst  4 bits

Instr 4 bits

M

U

X

M

U

X

M

U

X

M

U

X

M

U

X

C

O

N

T

R

O

L
IR W

OPCODE

MR

MW

ADDR

16

4

4

4

A

B

RS

W

16

NPC

1

Jump/

Inter

ALU A

ALU B

M to Reg

PCW

IR

W DATA

16

ADD A,B Decode

NPC

RegW

ALU Control

ALU Control

 
 

 

Based on the Opcode in the instruction register the Control circuit decides which all 

signal has to be generated. First thing to do is to increment the program counter. The 

control signal for incrementing the PC is PC write. The block shown as the RS contains 

all the registers. Based on the IR it selects the registers and outputs the contends of the 

registers into the temporary register A and B.  ALU (Arithmetic Logic Unit) requires two 

inputs to perform the operation.  Before the input to the ALU there are two muxes. These 

muxes will be selected in such a way that only the outputs from the temporary registers 

will be transferred to the ALU. What type of operation should the ALU perform depends 

on the next stage which is execute stage. 

 

 

 

 

 

 



 30 

 

 

 

P

C

M

E

M

O

R

Y

M

U

X

M

D

R

A

B

A

L

U

Inst 4 bits

Instr 4 bits

Instr 4 bits

M

U

X

M

U

X

M

U

X

M

U

X

M

U

X

C

O

N

T

R

O

L
IR W

OPCODE

MR

MW

ADDR

16

4

4

4

A

B

RS

W

16

NPC

1

Jump/

Interrupt

ALU A

ALU B

M to Reg

PCW

IR

W DATA

16

ADD A,B Execute

NPC

RegW

ALU Enable

ALU Control

 
 

 

The operation which ALU should perform depends on the ALU Control. In this case it is 

addition. So the ALU control will send out Control signals for addition. In the ALU 

control the control signal will be multiple. The result of the addition has to be stored in 

the register. For this the output of ALU will be fed to a MUX (this MUX selects the data 

from the ALU or from the memory based on the control signal Memory to Register. In 

this case the control signal will be given in such a way that only the data from the ALU 

will be select. The output will be written into the register. Which register to be written 

will be given by the RegisDest Mux.  


