
How Computers Work
Dr. John P. Abraham

Computers are used all over the world,

by people of many languages, and for

specialized and general purposes as we

discussed in the previous chapter. How

is that possible? Does a computer

understand many languages and many

disciplines? Absolutely not! It is the

software incorporated into the hardware

that makes computers so useful. At the

hardware level it only recognizes

switches that are turned off and on. By

the very nature of transistors, they can

act as switches and amplifiers. As more

transistors are packed into a CPUs, it

becomes very powerful.

One switch that provides two states, on

or off (1,0), is called a bit (short for

binary digit). We could use these two

states to mean anything, stop/go,

sit/stand, red/blue, yes/no, in/out, etc.

Two switches will provide us 4 states,

three switches 8 states, four switches 16

states, and so on. The basic unit of

switches used in a computer is 8

switches (byte) or multiples of 8 (word).

Eight switches provide us 256 states or it

can represent 256 items. It can easily

represent 26 English characters

(alphabet), 10 symbols used for

numbers, etc. Most languages have

lesser than 256 characters in their

alphabet. Some languages have more

than 256 characters, so we need

multiples of 8 bits. English alphabet

(actually it is the modified Roman

alphabet) uses the ASCII coding scheme,

where 01000001 represents “A”. The

Unicode provides for more than 256

characters in an alphabet. More about it

can be found in the next chapter.

When we have someone to do something

for us, we give him/her instructions and

data to accomplish the task. For instance

if you ask someone to make a telephone

call, the instruction (opcode) is “call”

and you give a telephone number, that

would be the data (operand). When we

give instructions to a computer, it is

called a program. The program is stored

in a portion of the memory and the data

is stored in another part of the memory.

Such machines that stores program in its

memory are called Von Neumann

machines. As long as the computer is

given the beginning location of the

program it can run the program as

needed. This also is explained in the

next two chapters. The number of

instructions available within a computer

(CPU) is small, 32, 64 or 128. Each

instruction is given a unique binary

pattern. In the following chapters you

will be asked to come up with bit

patterns for different instructions.

A computer system has a central

processing unit, and the input and output

units. The CPU fetches one instruction

at a time, decodes it, and if data is

required it fetches that data, executes the

instruction, and puts the results back in

the instructed location. Here are the

steps:

1. Figure out where the next

instruction is in the memory

(instruction address calculation).

2. Fetch the instruction

3. Figure out what the fetched code

means (decoding the instruction).

4. If it requires an operand

a. Figure out where the

operand is kept (operand

address calculation).

b. Fetch the operand

c. If there are multiple

operands repeat a and b.

5. Execute the instruction (such as

add, subtract, multiply, jump,

loop, etc)

6. Figure out the location to store

the result (operand address

calculation)

7. store the result, if there are

multiple results repeat 6 and 7.

8. Go back to 1 to do the next

instruction, or End if it is the last

instruction.

These steps need to be modified for

today’s sophisticated computers. For

instance when a memory address is

calculated, it may not be an absolute

address. It could be a register

address, relative address or virtual

address. The next instruction is

located in a special memory called a

register known as the program

counter (PC). Registers are the

fastest memory inside the CPU. We

will be studying about various types

of storage locations and some

techniques used to speed up memory

access in the next few weeks.

As mentioned above an instruction

should contain the opcode and the

operand(s). It should also indicate

where to put the result unless it is

implied. Similarly, it should also

indicate where the next instruction is

found, unless it is implied. The

operand could be directly supplied,

as in the example of the telephone

call instruction discussed earlier. It

is equally possible for this example

to give a telephone book for the user

to lookup the number. We will have

a lecture on addressing modes and

formats.

In the previous paragraphs it was

mentioned that instructions and data

were stored in different parts of the

memory. Memory can be considered

as boxes or group of boxes in which

we can place either data or

instructions. How big are these

boxes? It varies from one byte to

several bytes (word); word is a term

for the natural unit of data. Size of

word depends upon the width of the

buses and size of the registers in the

CPU. Amount of data transferred

between the CPU and the cache

memory is a word. It is possible the

size of a word to be smaller than the

data bus to keep downward

compatibility. It is also possible for

a word to be twice the size of the dat

bus; in which case the data will be

transferred in two chunks. The CPU

(central processing unit) fetches each

instruction, from the memory,

decodes it, fetches data if need be

and executes the instruction, and

stores the result in the memory.

The following example of adding

two numbers are taken from William

Stalling’s Computer Organization

and Architecture. Suppose two

variables, X and Y, are stored in

memory locations 513 and 514

respectively. We want to do the

operation X = X+Y, meaning add the

contents of 513 and 514 together and

store the result in 513. This can be

accomplished by two different

computers as follow:

1. Load X into accumulator

2. Add Y to the contents of the

accumulator

3. Store the contents of the

accumulator into X

OR

1. Load X and Y into

registers R1 and R2

2. Add R1 and R2 placing

the result in R1

3. Store R1 to X

The first computer only has one

usable register called the

accumulator (AC) therefore this

computer will work much slower

than the second machine. Main

Memory based operations are very

slow. The second machine has at

least two usable registers, perhaps

many more (as many as 128 or 256).

We will look at the Accumulator

machine in more detail in next

chapter.

We work with all types of operands

such as small numbers, large

numbers, decimals, characters,

yes/no, etc. We refer to these as data

types. Many of you, when

programming, used data types.

Please be thinking about the

repertoire of instructions that you

might need in a computer,

particularly the one you will be

asked to design within the next

couple of weeks. You need

instructions to move the data from

memory to CPU and back, and to

move data from memory to other

devices such as storage, video or

printer. You would also need

instructions for arithmetic and logic

operations and for branching. How

about for video and audio? What

else can you think about?

Other thinking points: How big of a

memory will you need? If you put

something in memory how would

you know where it was placed?

How big of a number can you assign

to a memory address?

