
Lab 10

Structures (Struct) and Files
Dr. Abraham

 Up until now you have been declaring variables of simple (atomic) data types.

Suppose you want to keep inventory of things you sell. Each item you have in stock has

a name (string), a price (double), and a quantity (integer). It would be nice to keep them

together and give it one name. That is what “Struct” does for us. In other languages it

may be called a “Record”. We can use a class as well which is covered in the next

chapter. With object oriented programming it does not make sense to use struct any

more. Nevertheless we C++ needs to be backward compatible to some extent. So let us

dive directly into struct. To set up variables of a struct data type, one must declare a data

type and then declare variables of that data type. Here is an example of declaring a struct

data type. Each component of the struct is called a data members or fields. In the

following example we will declare a struct data type called InvItem.

struct InvItem

{

 int partNum;

 string description;

 int onHand;

 float price;

};

InvItem in this example is used like a type. It can’t be used to place

values in it. A variable must be declared before using it. Here is

how to declare the variable “part” and initialize it.

InvItem part = {1111, “Fountain Pen”, 10, 20.25}

Once the struct data type is declared, variables of this type can be made just as any other

variable declaration. You can create any number of variables out of this struct, as in the

following program 10-1. Values can be placed in the member fields either by initializing

as shown above or by assigning values using the assignment operator (=) or by reading

like this:

part.partNum = 1111;

cin >> part.partNum;

Program 10-1
/* This program has a function that uses structure.

Created for my CSCI 1370 students

Dr. John P. Abraham */

#include <iostream>

#include <string>

using namespace std;

struct InvItem

{

 int partNum;

 string description;

 int onHand; //inventory on hand

 float price;

};

//2 prototypes

void getItem(InvItem&);

void showItem(InvItem);

int main()

{

 InvItem part, copyPart;

 getItem(part);

 copyPart = part;

 showItem(copyPart);

 cin.ignore();getchar();

 return 0;

}

void getItem(InvItem& piece)

{

 cout<<"Enter the part number: "; cin>>piece.partNum;

 cout<<"Enter the description: "; cin.get();

getline(cin,piece.description);

 cout<<"Enter the quantity on hand: "; cin>>piece.onHand;

 cout<<"Enter the unit price: "; cin>>piece.price;

}

void showItem (InvItem piece)

{

 cout<<"\n==================================\n";

 cout<<"Part Number: "<<piece.partNum<<endl;

 cout<<"Description: "<<piece.description<<endl;

 cout<<"Inv on hand: "<<piece.onHand<<endl;

 cout.precision(2);

 cout.setf(ios::fixed|ios::showpoint);

 cout<<"Price: $"<<piece.price<<endl;

}

Program Run 10-1

Files

 We have already visited files in earlier chapters where we created files to create

print files. After opening a file, a stream of characters were sent to the file through a

buffer. Finally when a file is closed an end of file marker (^Z) is placed to indicate that

the stream has ended. A file stream can be either input stream or output stream. In C++

and many other languages, peripheral devices are considered as files as well. Standard

input (keyboard file) and output (monitor file) are automatically opened. All we had to

use was the cin >> or cout <<. These streams are made available to us through the

iostream. In order for us to create other streams we need to include fstream. This

include file will allow us to use two classes: ofstream for output file stream and ifstream

for input file stream. Using these classes we can create variables and throughout the

program we refer to these variables we created. Each variable we create inherits member

functions that can be invoked using the dot notation, example: outfile.open (“myfile.txt”)

or outfile.close().

Stream: Channel or circuit on which data are passed from sender to receiver one

character at a time. If receiving data, it is called input stream. If sending data it is

called output stream.

Streams are connected to Devices. Example, cin is connected to keyboard and cout is

connected to monitor.

file streams are stored on disk device.

Here some ios member functions:

 ios::in Open in input mode

 ios::out Open in output mode

 ios::app Open in append mode

 ios::ate Go to the end of opened file

 ios::binary Open in binary mode

 ios::trunc Delete file contents if it exists

 ios::nocreate if file does not exist, open fails

 ios::noreplace if file exists, open for output fails.

 C++ provides for error checking while dealing with files. For examples, what

happens if a user does not put a disk in drive A? A robust program should check for

errors and recover from it. C++ provides an include file, assert.h, to help us catch errors.

In the following examples I will be using some functions provided by assert.h.

Program 10-2 (Writing to a file)
#include <iostream>

#include <fstream>

#include <assert.h>

using namespace std;

int main()

{

 fstream outfile ;

 outfile.open ("a:test",ios::app);

 assert(! outfile.fail());

 outfile << 25 <<" " << 38 << " " << 95 <<endl;

 outfile.close();

return 0;

}

Program Run 10-2

Assertion failed: ! outfile.fail(), file c:\c-2005\files1\files1\files1.cpp, lin

e 11

Important:

Re-run the program with outfile.open ("c:\test",ios::app);

Program 10-3 (Read from a file)

#include <iostream>

#include <fstream>

#include <assert.h>

using namespace std;

int main()

{

 int a;

 fstream infile ;

 infile.open ("c:\test",ios::in);

 assert(! infile.fail());

/* Here are two other loops you could use

for (;;)

{

 infile >> a;

 if (infile.eof()) break;

 cout << a << endl;

}

 do

 {

 infile >>a;

 if (!infile.eof()) cout <<a<<endl;

 }

 while (infile.peek() !=EOF);

*/

 while ((infile.peek()) !=EOF)

 {

 infile >>a;

 if (!infile.eof()) cout <<a<<endl;

 }

 infile.close(); //close file.

cin.ignore();getchar();

return 0;

}

Here is a program to make a copy of a text file.

Program 10-4
/**

Program by Dr. John P. Abraham

Program copies a text file.

for Students of 1370

**/

#include <iostream>

#include <fstream>

using namespace std;

int main()

{ char infilename[30], outfilename[30];

 cout << "Enter file name to copy from: "; cin>>infilename;

 cout << "Enter file name to copy to: "; cin>>outfilename;

 ifstream infile; ofstream outfile;

 infile.open(infilename);

 outfile.open(outfilename);

 char inc;

 infile.get(inc);

 while(!infile.eof())

 {

 infile.get(inc);

 cout <<inc;

 outfile << inc;

 }

 infile.close();

 outfile.close();

 return 0;

}

Assignments (the fist one is easy, the second one is challenging):

1. Re-write the file copy program (10-4) with two functions one to open the infile

and another one to open the outfile. One other modification to the program would

be instead of reading and writing one character at a time, read one line and write

one line at a time (use getline). It is important to know to pass files (streams) as

reference parameters.

2. Write a program to write struct in program 1 into a text file. Write another

program to read that data into struct.

