
C++ 
Lab 1 

Introduction 
Required terminology and general information for this chapter: 

Program – a series of instructions for a computer to execute. 

Programming languages: Machine, Assembly, and High Level 

How the first computers were programmed? By manually connecting wires. 

Machine language: programs and data were entered into the 
computer using zeros and ones. All operation codes (opcodes) and 
operands were entered in binary numbers. Machine language is 
the machine "understandable" language. It does not matter what 
other languages are used to program, eventually all programs and 
data will have to be translated into a "machine executable" format. 

Assembly Language: An easier programming language than 
machine language, where programs are written using familiar 
symbols (for example A for add). The operands could be in 
binary, hexadecimal or decimal format. For every machine 
language code, there needs to be one assembly language code. 
The program was not shorter, just easier to write. Once the 
program was written in assembly language, it had to be compiled 
to produce the machine executable code in order to run the 
program. The compiler used is called an ASSEMBLER. 

High Level Language: Included are languages such as Fortran 
(Formula Translator), COBOL (Common Business Oriented 
Language), BASIC (Beginner’s All purpose Symbolic Instruction 
Code), Pascal, C, Ada, and many more. Programs are much 
shorter than lower level languages. Each instruction is converted 
to several machine executable codes. This conversion is done in 



three steps: preprocessing, compiling and linking. An original 
program written using an EDITOR in a high level language is 
known as the Source Code. A compiled program is called the 
Object Code and the linked program is called the Executable 
Code. Examples of files created in each stage are: Carpet.CPP, 
Carpet.OBJ, and Carpet.EXE 

Syntax: Rules for constructing a legal sentence in a programming 
language. If a program has syntax errors, it will not compile. 
Therefore, it produces compile time errors.  

Semantics: Rules that determine the meaning of instructions 
written in a programming language. 

Runtime and Logical errors: A runtime error occurs when the 
program cannot execute what is being asked to do. For example, 
open a file when it does not exist. Logical errors are most difficult 
to fix; it is caused by faulty logic by the programmer. For 
example, suppose you wanted write a program to give discount if 
purchase is greater than $100.00, instead you programmed to give 
discount if purchase is less than $100.00. 

C++: The C (Dennis Ritchie) language is a modification of 
another language called BCPL (Ken Thompson). C language was 
written for programming under the Unix operating system 
environment which continues to be a very popular operating 
system for universities and businesses. C++ (Bjarne Stroustrup) is 
an object oriented version of C. 

Constant : a data item that does not change during the execution 
of the program. A constant could be a named constant or a literal 
constant. Example of a literal constant is given in the following 
program. Example of a named constant is:  

  const float TAX_RATE = 8.025; //TAX_RATE is a 
named constant      // 8.025 is a literal 
constant 

First C++ program: Call up the C++ programming environment from your 
windows desktop and type the following program in. Compile, and run it. 



If you do not know how to write the source code and compile, go to the end of 
this chapter where I explain it in the appendix. 

Program 1-1  

/******************************** 

 Say Hello program 

 By Dr. John Abraham 

 Created for 1380 students 

Teaching objective: program structure 

********************************/ 

#include <iostream>  //this is preprocessor directive 

using namespace std;  //tells the compiler certain objects such as cout are 
contained in the standard namespace 

int main ()   //this is the main function 

{ 

cout << "See mom! I wrote my first C++ program\n"; 

getchar(); //wait for the enter key to be pressed. Try the program without this 
line. 

return 0; 

} 

  

  

Program run 1 

See mom! I wrote my first C++ program 



Save your program to your floppy or thumb drive by clicking File, Save 
Hello.cpp as (the name will be whatever you named it.  I named it Hello), 
and give it a name like a:assignment1.cpp. 

A program in C++ is a collection of one or more functions. This program has 
only one function named main. The function main is a required function in all 
programs. If there are several functions in a program, each function carries out 
a different task. The main function will call other functions into action. 

Description of the program: Lines beginning with /* and ending with */ are 
comments, C++ ignores these lines. These comments are used for internal 
documentation. // may be used for commenting one line.  

Preprocessor library: C language is a small language and does not have 
inherent input/output support. Input/output support is provided by modules 
(library). This program outputs one line of text to the monitor. The monitor is 
the standard output device and the keyboard is the standard input device. A 
pound sign # indicates that the remainder of that line is an instruction 
(directive) to the compiler. #include <iostream.h> tells the compiler to add the 
code found in that file to the beginning of this program. This code handles all 
character stream inputs and outputs. Without this you cannot read from the 
keyboard or display anything to the monitor. 

A function: int main () is a function. A function receives one or more 
parameters (arguments) from the calling module and returns none or one result 
to the calling module. The word int before the function name (main) indicates 
that the function will return an integer to the calling module. The calling 
module of the main is the operating system. This program returns a zero to the 
operating system, indicating normal execution. The () after the function name 
indicates that this function does not receive any parameters from the calling 
module. Later we will see variations to this. 

Begin and End of a block: The beginning of a body or compound statement is 
indicated by { and the ending is indicated by }. 

Statement separator: A statement is separated from another statement by 
placing a semicolon between them. End of the line does not indicate end of a 
statement. 

cout and cin: cout displays (prints) to an output device such as a monitor, and 
cin receives input from an input device such as a keyboard. The << or >> 
indicates the direction of flow of the data. In this program, "See mom! I 



wrote my first C++ program\n, is the data (in this case the data is 
a literal) that flows into the output device. Notice that the string literal is 
enclosed in double quotes. The last two characters in the literal \n makes the 
cursor to go to a new line. The backslash is used as a symbol for escape. An 
escape sequence is used to control output devices. We will see additional 
escape sequences later. 

The return statement: return 0, returns zero to the calling module through the 
main. In this case, the operating system is given the value 0, indicating that the 
program had a normal execution. Perhaps, another procedure would have 
returned a result of a calculation to the calling module. 

 Program 1-1A 

/******************************** 

 Say Hello program 

 By Dr. John Abraham 

 Created for 1380 students 

********************************/ 

#include <iostream> //this is preprocessor directive 

using namespace std. 

int main () //this is the main function 

{ 

cout << "See mom! I wrote my first C++ program\n"; 

getchar(); //wait for the enter key to be pressed 

return 0; 

} 

  



Arithmetic in C++ 

 When we write code in C++ to do calculations, it is important to 
remember that results of integer and integer calculations may be different than 
real and real calculations. We also need to know how mixed number 
calculations will be carried out. C++ will allow you to assign a number with 
decimal to an integer, however, the fractional part will be discarded. Program 
1-2 explores various arithmetic calculations. 

Program 1-2 

/***************************************** 
 c++ Arithmetic 
 By Dr. John Abraham 
 Created for 1380 students 
    Instructional objective: Arithmetic 
******************************************/ 
 
#include <iostream> //this is preprocessor directive 
 
using namespace std;         //using directive 
 
int main ()             //this is the main function 
{ 
 int i,j,k,l, m,n; 
 float a,b,c; 
 //integer operations 
 cout << "INTEGER OPERATIONS\n \n"; 
 i = 6 + 3; 
 l = 6.5; 
 m = 3.5; 
 j = l + m; 
 k = 10 /3; 
 n = 10 % 3; 
 cout << "6 + 3 = " << i << "\n"; 
 cout << "l = 6.5, m = 3.5 --------->l + m = " << j << "\n"; 
 cout << "10 / 3 = " << k << "\n"; 
 cout << "10 % 3 = " << n << "\n"; 
 
 //real and mixed operations 
 cout << "\nREAL AND MIXED OPERATIONS \n \n"; 
 a = 10 / 3; 
 b = 10.0 / 3.0; 
 c = 10.0 /3; 



 cout << "10 / 3 = " << a << "\n"; 
 cout << "10.0 / 3.0 = " << b << "\n"; 
 cout << "10.0 / 3 = " << c << "\n"; 
 getchar(); 
 
return 0; 
} 

 

INTEGER OPERATIONS 

6 + 3 = 9 

l = 6.5, m = 3.5 --------->l + m = 9 

10 / 3 = 3 

10 % 3 = 1 

REAL AND MIXED OPERATIONS 

10 / 3 = 3 

10.0 / 3.0 = 3.33333 

10.0 / 3 = 3.33333 

  

  

If l=6.5 and m =3.5 then l+m should be 10, why is it 9? We assigned these 
numbers to integer variables, which discards the fractional part leaving 6 and 3, 
which give a total of 9. How about 10/9 yielding 3? This is called integer 
division. The next problem 10 % 3 gives a result of 1, which is the remainder of 
the integer division (also known as the modulus). In the next problem even 
though we assigned the result of 10/3 to a real variable (a), the variable only 
received the result of an integer division. The result of 10.0/3.0 is 3.333333; 
here both numbers are real numbers (float). However the last problem 10.0/3 



also gives 3.33333, why? In a mixed operation like this the integer is converted 
to float first, then the operation is carried out. 

Homework 

The terminology given at the beginning of this chapter is very important. You 
must learn it thoroughly. Make q-cards and memorize the terms. 

Write this program over and over again until you do not have to look at the 
notes. You should not continue to the next chapter until you mastered this 
chapter thoroughly. 

This homework may appear surprisingly easy to you. Don’t be fooled. Many 
students do not finish the course because they do not spend much time with the 
first two chapters.  

Write a program to determine the number of thousands, hundreds, tens, and 
ones in a given number. Hint: use integer division and modulus. Example of a 
program run: 

 In 8532 there are 

  8 thousands 

  5 hundreds 

  3 tens 

  2 ones. 

 

Appendix 

How to launch Microsoft visual studio, write a program, compile and run. 

1. Find the icon for Microsoft visual studio 2005 and click it to launch the 
program. 

2. The start page looks like this: 
 



 

3. You will see Open and Create.  Click on Create Project.  On the left side 
you will see the languages, if C++ is not shown click on other languages.  
Click on Visual C++ and Win 32 console application.  Enter a name 
such as Hello Program.  Pay attention to the location and subdirectory.  
This is where all your programs will be kept. 



 

4. Click OK, then click next.  In the following screen click empty project 
and press finish. 



 

5. This step is important: right click on source files in the solution 
explorer and click to add new item.  If the solution explorer does not 
show up you need to click on the solution explorer icon (the one with the 
magnifying lens).   



6. Click on code on the left side and click on C++ file.  Give it a name and 
click Add. 

7. Type in the program. 

 

 

 


