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Introduction

Beechcraft Baron-58 aircraft 
Airfoil - NACA 23015 

Angle of attack = 4 deg. 

cl = 0.54 and cd = 0.0068

A r e t h e l i f t a n d d r a g 
coefficients for the Beechcraft 
wing same as the airfoil? 

NO!!



Downwash and Induced Drag
Why are the aerodynamic characteristics of finite wings different 
from its airfoil sections? 

Flow over an airfoil is two-dimensional. 

In contrast, flow over a finite wing is three-dimensional.



Downwash and Induced Drag
The tendency for the flow to leak around the wing tips produces a 
trailing vortex at each wing tip.

Trailing vortices at each wing tip. 
The two vortices drag the surrounding air inducing a velocity 
component in the downward direction - downwash. 

The downwash combines with the local freestream to create a local 
relative wind.



Downwash and Induced Drag

The downwash has two important effects: 
The effective angle of attack is reduced. 

Induced drag is created due to the tilting of the local lift vector. 

The total drag = friction drag + pressure drag + induced drag.



The Vortex Filament Theorem

Establish a rational aerodynamic theory for a finite wing.

The curved filament induces a flow 
field in the surrounding space. 
Circulation taken about any closed 
path enclosing the filament is 
constant.

Consider a segment dl. It induces a velocity at P equal to:

dV =
�

4⇡

dl ⇥ r

|r|3

Biot-Savart Law



The Vortex Filament Theorem
When a number of vortex filaments are used in conjunction with a 
uniform free stream, it is possible to synthesize the flow over a 
finite wing.

Biot-Savart Law to a straight 
vortex filament of infinite length

Velocity induced at P by the entire 
vortex filament is given by:

The above result is the same as that 
for a point vortex in a 2D flow.

V =

Z 1

�1

�

4⇡
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|r|3 =
�

2⇡h



The Vortex Filament Theorem

Semi-infinite vortex filament

Velocity induced at P by the 
vortex filament is given by:

Helmholtz’s Vortex Theorems (basic principles of vortex behavior) 
The strength of a vortex filament is constant along its length. 

A vortex filament cannot end in a fluid; it must extent to the 

boundaries of the fluid or form a closed path.

V =

Z 1

A
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Lift Distribution on a Finite Wing

Consider a given spanwise location y1, 
where the local chord is c. 

The lift per unit span can vary along the 
span. 

Different spanwise locations can have 
different angles of attack (geometric 
twist). 



Lift Distribution on a Finite Wing

Consider a given spanwise location y1, 
where the local chord is c. 

Wings can also have different airfoil 
section spanwise (aerodynamic twist). 

Pressure equalization occurs at y = -b/2 
and b/2, and consequently there is no lift 
at these locations. 

Our objective is to estimate this lift 
distribution, total lift and induced drag 
for the finite wing.



Prandtl’s Lifting Line Theory
The theory is useful for predicting the aerodynamic 
characteristics of finite wings.

The finite wing is replaced with a bound vortex. 
Due to Helmholtz’s theorem, a vortex filament cannot end in the 
fluid. 

Therefore, assume the vortex filament continues as two free vortices 
trailing downstream from the wing tips to infinity. 

Bound vortex + Trailing vortices —> Horseshoe Vortex.



Prandtl’s Lifting Line Theory
Consider the downwash induced along the bound vortex by the 
horseshoe vortex.

The velocity at any point along the bound 
vortex induced by the trailing vortex is:
w(y) = � �

4⇡(b/2 + y)
� �

4⇡(b/2� y)

left vortex right vortex

The downwash approaching infinity value at the tips is 
disconcerting.

w(y) = � �b

4⇡ [(b/2)2 � y2]



Prandtl’s Lifting Line Theory
Instead of representing the wing by a single horseshoe vortex, 
superimpose using a large number of horseshoe vortices. 

Each horseshoe with a different length of the bound vortex. 

All bound vortices coincident along a single line - Lifting Line.

The series of trailing vortices represents pairs of vortices. 
Each pair is associated with a given horseshoe vortex. 

The strength of each trailing vortex is equal to the change in 
circulation along the lifting line.



Prandtl’s Lifting Line Theory
Let us extrapolate to the case where an infinite number of 
horseshoe vortices are superimposed along the lifting line. 

Each horseshoe has vanishingly small strength.

The finite number of trailing vortices in the earlier case have 
become a continuous vortex sheet. 
The total strength of the sheet integrated across the span of the 
wing is zero (because of pairs of trailing vortices of equal but 
opposite strengths).



Prandtl’s Lifting Line Theory
Let us single out an infinitesimally small segment of the lifting line 
dy. 

The circulation, and the change in circulation at y are respectively:
�(y) and d� = (d�/dy)dy

In turn, the strength of the trailing vortex at y must equal the 
change in circulation along the lifting line.



Prandtl’s Lifting Line Theory

The velocity dw induced at y0 by the entire semi-infinite trailing 
vortex located at y is:

dw = � (d�/dy)dy

4⇡(y0 � y)

The total velocity induced at y0 by the entire trailing vortex sheet 
is:

w(y0) = � 1

4⇡

Z b/2

�b/2

(d�/dy)dy

(y0 � y)



Prandtl’s Lifting Line Theory
However, our central problem remains to be solved: we want to 
calculate        for a given finite wing.�(y)

↵i(y0) = tan�1

✓
�w(y0)

V1

◆

For small angles, ↵i(y0) =

✓
�w(y0)

V1

◆

The geometric angle of attack is given by:

↵(y0) =
�(y0)

⇡V1c(y0)
+ ↵L=0(y0) +

1

4⇡V1

Z b/2

�b/2

(d�/dy)dy

y0 � y

Prandtl’s Lifting Line Theory Equation



Prandtl’s Lifting Line Theory - Elliptic Lift Dist.
Consider a circulation distribution given by:

�(y) = �0

s

1�
✓
2y

b

◆2

The circulation, and hence lift, goes to zero at the wing tips. 
What are the aerodynamic properties of a finite wing with such an 
elliptic lift distribution?

Constant downwash over the span w(✓0) = ��0

2b

Constant induced angle of attack 
over the span

Induced drag proportional to square 
of lift coefficient

↵i = � �0

2bV1
=

CL

⇡(AR)

CD,i =
C2

L

⇡(AR)



Prandtl’s Lifting Line Theory - Elliptic Lift Dist.

Induced drag CD,i =
C2

L

⇡(AR)

The dependence of induced drag on lift is not surprising. 
Induced drag is a consequence of the presence of wing-tip vortices 
produced by the pressure difference between lower and upper wing 
surfaces. 
Lift is also produced by this same pressure difference and hence the 
dependence. 

Induced drag is the price for generation of lift. An aircraft cannot 
generate lift for free. 

Power required for an aircraft to overcome induced drag is the power 
required to generate the lift of the aircraft. 
Induced drag is high at take-off, landing , and about 25% of total drag 
at cruising speeds.



Prandtl’s Lifting Line Theory - Elliptic Lift Dist.

Induced drag CD,i =
C2

L

⇡(AR)

Induced drag is inversely proportional to the aspect ratio. 
To reduce induced drag, we want a finite wing with the highest 
possible aspect ratio. 
Design of high aspect ratio wings with sufficient structural strength is 
difficult. 
Therefore aspect ratio is a compromise between aerodynamic and 
structural requirements.



Prandtl’s Lifting Line Theory - Elliptic Lift Dist.
Another property of an elliptic lift distribution: 

Consider a wing with no geometric twist (angle of attack is constant 
along the span). 
Also, assume no aerodynamic twist (zero-lift angle of attack is 
constant along the span).

The local section lift coe�cient is cl = a0(↵eff � ↵L=0)

The lift per unit span is then given by L0(y) = q1ccl

The above equations show that for an elliptic lift distribution: 
The chord must vary elliptically along the span. 

The wing planform is elliptical.

Solving for the chord, we have c(y) =
L0
(y)

q1cl



Prandtl’s Lifting Line Theory - General Lift Dist.

Consider the transformation: y = � b

2
cos✓

The elliptic lift distribution is then given by:

�(✓) = �0sin✓ = 2bV1

NX

1

Ansin(n✓)

So the angle of attack evaluated at a given spanwise location is:

↵(✓0) =
2b

⇡c(✓0)

NX

1

Ansin(n✓0) + ↵L=0(✓0) +
NX

1

nAn
sin(n✓0)

sin✓0

The only unknowns in the above equation are the Fourier 
coefficients. 

They can be evaluated by considering ’n’ spanwise locations.



Prandtl’s Lifting Line Theory - General Lift Dist.

Now that        is known, the lift coefficient can be calculated: �(✓)

CL = A1⇡(AR)

The induced drag coefficient is then calculated to be:

CD,i =
C2

L

⇡(AR)
(1 + �), where

� =
NX

2

n(An/A1)
2



Prandtl’s Lifting Line Theory - General Lift Dist.

expensive to manufacture

less than optimum lift

compromise between 
elliptic & rectangular

Supermarine Spitfire
induced drag factor 

vs taper ratio

Obtain taper ratio such that the lift 
distribution closely approximates the 
elliptic case.



Effect of Aspect ratio

AR typically varies from 6 to 22 for standard subsonic aircraft. 
The primary design factor for minimizing induced drag is to make the 
aspect ratio as large as possible.

The total drag is: profile drag + induced drag

CD = cd +
C2

L

⇡eAR

Consider two wings with different aspect ratios but same airfoil 
cross-section. 

It is possible to scale the data of a wing with one aspect ratio to 
correspond to the case of another aspect ratio.

CD,1 = CD,2 +
C2

L

⇡e


1

5
� 1

AR2

�



Effect of Aspect ratio
There are two primary differences between airfoil and finite wing 
properties. 

One: finite wing generates induced drag. 

Two: The lift slope of a finite wing is less than that of an infinite wing.

a =
a0

1 + (a0/⇡AR)(1 + ⌧)

 is a function of Fourier coefficients and 
typically range between 0.05 and 0.25.
⌧


