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Introduction

We will focus on how to obtain airfoil properties. 

Circulation theory 

Source Panel Method 

Design and Performance

Aerodynamic consideration of wings: 

Section of a wing - airfoil 

The complete finite wing 

In this chapter, we will deal with airfoils. 

In the next chapter, we will deal with finite wings



What is an Airfoil?

The wing extends in the y-direction. 

Any section of the wing cut by a plane parallel to xz-plane is 

called an airfoil.



Airfoil Nomenclature

Mean camber line - locus of points halfway between upper and 
lower surfaces 
Chord - Straight line connecting the leading and trailing edges. 
Camber - Maximum distance between the mean camber line and 
the chord line. 
Thickness - Distance between the upper and lower surfaces 
measured perpendicular to the chord line. 
Leading-edge is generally circular with a radius of 0.02c.



NACA Airfoils

NACA 4-digit series (e.g. NACA 2412) 

1st digit: maximum camber in hundredths of chord (0.02c or 2%). 

2nd digit: location of maximum camber from the leading edge 

along the chord in tenths of chord (0.4c or 40%). 

Last two digits: maximum thickness in hundredths of chord (0.12c 

or 12%).
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NACA Airfoils

NACA 5-digit series (e.g. NACA 23012) 

1st digit x (3/2) gives design lift coefficient in tenths of chord (0.3). 

(Next two digits)/2 gives: location of maximum camber from the 

leading edge along the chord in hundredths of chord (0.15c or 

15%). 

Last two digits: maximum thickness in hundredths of chord (0.12c 

or 12%).
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NACA Airfoils

NACA 6-digit series (e.g. NACA 65-218) 

Very widely used laminar flow airfoils 

1st digit: represents the series. 

2nd digit: Gives location of minimum pressure in tenths of the 

chord from the leading edge (0.5c). 

3rd digit: Design lift coefficient in tenths of the chord (0.2). 

Last two digits: maximum thickness in hundredths of chord (0.18c 

or 18%).



Airfoil Characteristics
Airfoil characteristics are typically lift, drag and moment 
coefficients.

Lift slope: lift coefficient varies 
linearly angle of angle of attack. 
Zero-lift angle of attack: the value 
of angle of attack when lift is 
zero.

Using inviscid flow theory, we can predict lift slope and zero 

angle of attack. But the maximum lift coefficient can only be 

calculated using viscous flow theory.



Lift and Moment Coefficients

These coefficients are taken about the 
quarter-chord location. 
Note the difference for the two Re cases 
wrt lift-slope and max. lift coefficient. 
Max. lift coefficient depends on Re 
(viscous effects).

Moment coefficient does not vary for this airfoil with angle of 
attack. 

Center of pressure: location where the resultant of a distributed 
load acts. 
Aerodynamic Center: location where the pitching moment is 
relatively constant with angle of attack.



Profile Drag

Profile drag: friction drag + pressure 

drag 

Profile drag is dependent on Re. 

Moments coefficients for moments 

taken about the aerodynamic center 

very weakly dependent (nearly 

independent) on the angle of attack for 

NACA 2412.

Examples!!



Theoretical Solutions for Low-Speed Airfoils

Vortex Filament Vortex Sheet



Theoretical Solutions for Low-Speed Airfoils

induced velocity dV = ��ds

2⇡r

velocity potential d� = ��ds

2⇡
✓

Velocity potential at P due to entire vortex sheet is:

�(x, z) = � 1

2⇡

Z b

a
✓�ds

Circulation around entire vortex sheet (sum of strengths of 
elemental vortices) is:

� =

Z b

a
�ds



Circulation around an Airfoil

� = �(v2dn� u1ds� v1dn+ u2ds) = �ds

� = (u1 � u2)ds+ (v1 � v2)dn = �ds

assuming dn ! 0, �ds = (u1 � u2)ds

) � = u1 � u2

The local jump in tangential velocity across a vortex sheet is 
equal to the local sheet strength.



Circulation around an Airfoil
The concept of vortex sheet is instrumental in the analysis of low-
speed characteristics of an airfoil.

Replace airfoil surface with a vortex sheet of variable strength. 
Calculate strength of elemental vortices as a function of ’s’ such 
that when vortex induced velocity is aded to freestream, the 
streamline would represent the airfoil surface. 
The circulation around the airfoil is then given by:

� =

Z
�ds ) L0 = ⇢1V1� (Kutta-Joukowski theorem)



Thin Airfoil Approximation

Imagine the airfoil is made very thin (top and bottom surfaces 

coincide). 

Airfoil can be represented with a single vortex sheet distributed 

over the camber line. 

The strength of the vortex sheet can be calculated such that 

when the induced velocity is added to the free stream velocity, 

the camber line become a streamline of the flow.



The Kutta Condition

Infinite number of potential flow 
solution are possible depending 
on the choice of circulation 
magnitude.

Similarly, for an airfoil, infinite number of potential flow 

solutions are possible. 

So, which one down pick?



The Kutta Condition

We know, a given angle of attack produces a single value of lift. 

So, which ‘gamma’ does nature choose?  

It has to fix the value of ‘gamma’. 

To find out, let us look at an airfoil set into motion from a state 

of rest.



The Kutta Condition

In (a), flow has just started. 
It tries to curl around the TE. 
Velocity becomes infinitely large at the 
sharp corner. Realistically impossible. 
Such flow is not tolerated very long by 
nature. 
So, flow leaves the top and bottom 
surfaces of the airfoil smoothly. 
Therefore, nature adopts that value of 
circulation which results in a smooth 
flow at the trailing edge - Kutta 
condition.



The Kutta Condition

If the trailing edge angle is finite, then it is a stagnation point. 
If the trailing edge is a cusp, velocities leaving the top and 
bottom are finite and equal in magnitude an direction. 
In terms of vortex sheet, at the trailing edge:

� = �(a) = V1 � V2 = 0



Lift Without Friction?

We know that lift on a airfoil is primarily due to surface pressure 
distribution (acts normal) and not due to shear stress (tangential). 
However, in a perfectly inviscid world, an airfoil would not 
produce lift. Sounds contradictory!! 
In reality, nature enforces the Kutta condition - i.e. the viscous 
boundary layer remains attached all the way to the TE.

Lift, which is created by surface pressure distribution (inviscid 
phenomenon) cannot exist in an inviscid world.



Kelvin’s Circulation Theorem
How does nature enforce the Kutta condition? How does it 
generate this circulation for a given airfoil?

�1 = �
Z

C1

V.ds; �2 = �
Z

C2

V.ds

�1 = �2

d�

Dt
= 0

Kelvin’s Circulation Theorem: Time rate of change of circulation 
around a closed contour consisting of the sam fluid elements is 
zero.



Kelvin’s Circulation Theorem

So, how is circulation generated around an airfoil?
Let V = 0, so circulation = 0, around 
c1. 
As the flow is started over the airfoil, 
large velocity gradients at the trailing 
edge generate vorticity that rolls up 
downstream - starting vortex. 
Due to Kelvins theorem, the starting 
vortex has to induce equal and 
opposite circulation on the airfoil.

Ideally, the starting vortex remains forever downstream. 
Realistically, it dissipates due to viscous action. 
Example!!



The Thin Airfoil Theory

Thin Airfoil 
A vortex sheet placed along the camber line 

Our purpose is to calculate the variation in vorticity such that the 

camber line becomes a streamline. 

Kutta condition at the trailing edge should be satisfied. 

Once variation of vorticity that satisfies these conditions is found, 

total circulation is calculated by integrating vorticity from LE to 

TE. 

Lift can then be calculated using the Kutta-Joukowski theorem.



The Thin Airfoil Theory

Assumptions 
Thin airfoil, i.e. camber line is 

close to the chord line. 

Vortex sheet falls approximately on 

the chord line

� = �(x)

�(c) = 0

The strength of the vortex sheet on the chord line must be 
determined such that the camber line (not the chord line) is a 
streamline.



The Thin Airfoil Theory
For the camber line to be a streamline, the component of 
velocity normal to the camber line must be zero. 

V1,n + w0(s) = 0

V1,n = V1sin


↵+ tan

�1

✓
�dz

dx

◆�

For small angles of attack,

sin✓ = tan✓ = ✓

V1,n = V1


↵�

✓
dz

dx

◆�



The Thin Airfoil Theory
Z c

0

�(⇠)d⇠

(x� ⇠)
= V1


↵�

✓
dz

dx

◆�
fundamental equation of thin 
airfoil theory

In the above equation, 
A vortex sheet placed along the camber line 

Our purpose is to calculate the variation in vortex strength such 

that the camber line becomes a streamline. 

The central challenge is to calculate the vortex strength variation 

subject to the Kutta condition, i.e.

�(c) = 0



The Thin Airfoil Theory
Consider a symmetric airfoil 

No camber. 

Camber line is coincident with the chord line (dz/dx = 0). Therefore,

1

2⇡

Z c

0

�(⇠)d⇠

x� ⇠

= V1↵

⇠ ! ✓ : ⇠ =
c

2
(1� cos✓)

x ! ✓0 : x =
c

2
(1� cos✓0)

solving, �(✓) = 2↵V1
1 + cos✓

sin✓



The Thin Airfoil Theory
Now, total circulation around the airfoil is given by:

� =

Z c

0
�(⇠)d⇠ =

c

2

Z ⇡

0
�(✓)sin✓d✓

Simplifying,
� = ⇡↵cV1

Lift can now be calculated using the Kutta-Jouski theorem:
L = ⇢1V1� = ⇡↵c⇢1V 2

1

Lift Coefficient is then:

cl =
L0

q1S
= 2⇡↵

Lift Coefficient is proportional to the angle of attack.



The Thin Airfoil Theory
Now, let us calculate moment about the leading edge:

dL = ⇢1V1d�

dM = �⇠(dL)

(about LE)

Total moment about the LE due to the entire vortex sheet is:

M 0
LE = �

Z c

0
⇠(dL) = �⇢1V1

Z c

0
⇠�(⇠)d⇠ = �q1c2

⇡↵

2



The Thin Airfoil Theory
The moment coefficient about the leading edge:

Moment coefficient about the quarter-chord point is:

cm,le =
M 0

LE

q1Sc
= �⇡↵

2
= �cl

4

cm,c/4 = cm,le +
cl
4

= 0

Center of pressure: Moments are zero
Aerodynamic Center: Moments are independent of angle of 
attack. 
For a symmetrical airfoil, the quarter-chord location is both the 
center of pressure and the aerodynamic center.



The Cambered Airfoil
Z c

0

�(⇠)d⇠

(x� ⇠)
= V1


↵�

✓
dz

dx

◆�

For a cambered airfoil, dz/dx is finite.
1

2⇡

Z ⇡

0

�(✓)sin✓d✓

cos✓ � cos✓0
= V1

✓
↵� dz

dx

◆

Solving, we obtain:

�(✓) = 2V1

 
A0

1 + cos✓

sin✓

+
1X

n=1

Ansin(n✓)

!

A_0 and A_n are Fourier coefficients that depend on shape of the 
camber line and angle of attack.



The Cambered Airfoil
The Fourier coefficients are:

An = ↵� 1

⇡

Z ⇡

0

dz

dx

d✓0

An =
2

⇡

Z ⇡

0

dz

dx

cos(n✓0)d✓0

Now, circulation due to the entire vortex sheet from LE to TE is:

� =

Z c

0
�(⇠)d⇠ = cV1

⇣
⇡A0 +

⇡

2
A1

⌘

The lift coefficient is then given by:

cl = 2⇡


↵+

1

⇡

Z ⇡

0

dz

dx

(cos✓0 � 1)d✓0

�



The Cambered Airfoil
Similarly, the moment coefficient about the LE is given by:

cm,le = �
hcl
4
+

⇡

4
(A1 �A2)

i

The moment coefficient about the quarter-chord location is 
given by:

cm,c/4 = �
h⇡
4
(A2 �A1)

i

From the above equation, we can see that: 
The quarter-chord is not the center of pressure for a cambered 
airfoil. 

However, since the moment is independent of the angle of attack, 
the quarter-chord is the theoretical aerodynamic center for a 
cambered airfoil.



The Aerodynamic Center
The aerodynamic center is that point on a body about which the 
aerodynamically generated moment is independent of the angle 
of attack. 
For most airfoils, it is close to, but not exactly at the quarter-
chord location. 
So, how do we calculate its location?



The Aerodynamic Center
Taking moments about the aerodynamic 
center, we get:

M

0
ac = L

0(cx̄ac � c/4) +M

0
c/4

or, cm,ac = cl(x̄ac � 0.25) + cm,c/4

Rearranging the above equation and recognizing that the slopes 
of lift and moment coefficients are constants before stall, we 
have:

x̄ac = �m0

a0
+ 0.25 where,

dcl
d↵

= a0;
dcm,c/4

d↵
= m0



Modern Low Speed Airfoils
The standard NACA airfoils were based on experimental data in 
the 1930’s and 1940’s. 
New NASA airfoils were designed using source and vortex panel 
methods along with numerical prediction of viscous flow 
behavior. E.g. GA(W)-1 airfoil.

Large leading edge to flatten the the pressure coefficient peak. 
The trailing edge is cusped to increase the camber and loading. 
The design discourages flow separation over the top surface 
leading to high lift coefficient.



Viscous Flow: Airfoil Drag

Lift: Primarily due to pressure distribution on airfoil surface. 

Shear stress distribution in the lift direction is generally very 

small. 

Lift can therefore be accurately calculated assuming inviscid 

flow in conjunction with Kutta condition at the TE. 

Drag: Predicting drag using an inviscid approach results in zero 

drag (d’Alembert’s paradox). 

However, when friction is included, this paradox is 

immediately removed.



Viscous Flow: Airfoil Drag

Skin Friction Drag 

Due to shear stress acting on the surface. 

Pressure Drag (form drag) 

Due to flow separation.



Skin-Friction Drag: Laminar Flow

Assume that skin-friction for airfoil 
is same as that for a flat plate.

The above assumption becomes more accurate for a thinner 
airfoil and small angles of attack.

� =
5.0xp
Re

x

Re

x

=
⇢

e

V1x

µ1

The total skin-friction drag is given by:
D

f

= 2D
f,top

= 2D
f,bottom

where c
f

⌘ D
f,top

q1S
=

D
f,bottom

q1S
=

1.328p
Re

c



Skin-Friction Drag: Turbulent Flow

In contrast to laminar flow, there are no analytical solution for 
turbulent flow. 
All analyses of turbulent flow are approximate.

� =
0.37x

Re

1/5
x

Cf =
0.074

Re1/5c



Skin-Friction Drag: Transition Flow

Flow always starts out as laminar at the leading edge, then 
becomes unstable and transitions into a turbulent flow. 
The value of x where transition takes place is the critical value 
xcr.

Re

xcr =
⇢1V1x

cr

µ1



Flow Separation
Pressure drag is caused by flow separation.



Flow Over An Airfoil - The Real Case 
In the real case, flow separation occurs over the top surface of 
the airfoil when the angle of attack exceeds the stall angle.

Leading-Edge stall 
Characteristic of relatively thin 

airfoils. 

Thickness-to-chord ratios 

usually between 10% - 16% of 

the chord length.



Flow Over An Airfoil - The Real Case 

Trailing-Edge stall 
Characteristic of thicker airfoils. 

Progressive and gradual movement of separation from TE to LE as 

angle of attack is increased.



Flow Over An Airfoil - The Real Case 

Thin-Airfoil Stall (flat plate) 
This type of stall is associated with the 
extreme thinness of the airfoil. 

The thickness is about 2% of the chord 
length.



Other Airfoil Aerodynamics
Two figures of merit that are primarily used to judge the quality of 
a given airfoil are: 

L/D ratio 

Maximum lift coefficient.

Tremendous incentive exists to increase the maximum lift 
coefficient. 

Lower stalling speeds or higher payload capacity. 

Maneuverability of an airplane depends on high value of CL,max.

For an airfoil at a given Re, CL,max depends primarily on its shape. 
To increase CL,max further, special measures have to be carried out. 

Measures include use of flaps, and/or LE slats - high lift devices.



High Lift Devices - TE Flaps



High Lift Devices - LE Slats

The adverse pressure gradient on the top surface is mitigated 
delaying flow separation. 

Stall angle and maximum lift coefficient increased. 

There is no change in the zero-lift angle, but the lift curve is 
extended to a higher stalling angle of attack.



High Lift Devices

The main flow over the top surface of the airfoil is essentially 
separated. 
The local flow through the gaps in the multi element flap is locally 
attached to the top surface of the flap. 
Because of this locally attached flow, the lift coefficient is still quit 
high, around 4.5.


