MECE 4333/6399: Homework

Aerodynamics: Introduction
Isaac Choutapalli

Read all of the following information before starting the homework:

= Before you begin the solution, always state what is given, asked and then present your solution.
Your homework must have the following three parts:

= Given:
= Asked:
=> Solution:
=> Your homework must be very neat and presentable. I will assign a zero grade if I cannot

understand what you wrote, if your hand writing is illegible or if your homework consists of
couple of pieces of paper put together hurriedly.

=> Show ALL steps, clearly and in order, if you want to get full credit. I reserve the right to
take off points if I cannot see how you arrived at your answer (even if your final answer is
correct).

= If you are using a MATLAB code, you will also need to include the code as part of your HW.

=> Homework will be due at the beginning of the class indicated by the instructor. Late home-
work will not be accepted under any circumstances.

Name:

by writing my name, I swear by the bronc honor code
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1.1

1.2

1.3

1.4

For most gases at standard or near standard conditions, the relationship
among pressure, density, and temperature is given by the perfect gas
equation of state: p = pRT. where R is the specific gas constant. For air
at near standard conditions, R = 287 J/(kg - K) in the International
System of Units and R = 1716 ft - Ib/(slug - °R) in the English
Engineering System of Units. (More details on the perfect gas equation of
state are given in Chapter 7.) Using the above information, consider the
following two cases:

a. Ata given point on the wing of a Boeing 727, the pressure and
temperature of the air are 1.9 x 10*N/m? and 203 K, respectively.
Calculate the density at this point.

b. Ata point in the test section of a supersonic wind tunnel, the pressure
and density of the air are 1058 Ib/ft* and 1.23 x 1073 slug/ft’,
respectively. Calculate the temperature at this point.

Starting with Equations (1.7), (1.8), and (1.11), derive in detail

Equations (1.15), (1.16), and (1.17).

Consider an infinitely thin flat plate of chord ¢ at an angle of attack « in a

supersonic flow. The pressures on the upper and lower surfaces are

different but constant over each surface; that is, p, (s) = ¢; and

pi(s) = ¢, where ¢; and ¢, are constants and ¢; > ¢. Ignoring the shear

stress, calculate the location of the center of pressure.

Consider an infinitely thin flat plate with a 1 m chord at an angle of attack

of 10° in a supersonic flow. The pressure and shear stress distributions on

the upper and lower surfaces are given by p, = 4 x 10%(x — 1)* +

54 x 104 pp =2 x 10%(x — 1) + 1.73 x 10°, 7, = 288x %2, and

7, = 731x7%2, respectively, where x is the distance from the leading edge

in meters and p and t are in newtons per square meter. Calculate the

normal and axial forces, the lift and drag, moments about the leading
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1.5

1.6

1.7

1.8

1.9

edge, and moments about the quarter chord, all per unit span. Also,
calculate the location of the center of pressure.

Consider an airfoil at 12° angle of attack. The normal and axial force
coefficients are 1.2 and 0.03, respectively. Calculate the lift and drag
coefficients.

Consider an NACA 2412 airfoil (the meaning of the number designations
for standard NACA airfoil shapes is discussed in Chapter 4). The
following is a tabulation of the lift, drag, and moment coefficients about
the quarter chord for this airfoil, as a function of angle of attack.

o (degrees) ¢ Cq (B
-2.0 0.05 0.006 —0.042
0 0.25 0.006 —0.040
2.0 0.44 0.006 —-0.038
4.0 0.64 0.007 —0.036
6.0 0.85 0.0075 —0.036
8.0 1.08 0.0092 —0.036
10.0 1.26 0.0115 —0.034
12.0 1.43 0.0150 —0.030
14.0 1.56 0.0186 —0.025

From this table, plot on graph paper the variation of x.,/c as a function

of a.

The drag on the hull of a ship depends in part on the height of the water
waves produced by the hull. The potential energy associated with these
waves therefore depends on the acceleration of gravity g. Hence, we can
state that the wave drag on the hull is D = f (050, Voo, €. g) Where c is a
length scale associated with the hull, say, the maximum width of the hull.
Define the drag coefficient as Cp = D/g..c?. Also, define a similarity
parameter called the Froude number, Fr = V /, /gc. Using Buckingham’s
pi theorem, prove that Cp, = f(Fr).

The shock waves on a vehicle in supersonic flight cause a component of
drag called supersonic wave drag D,,. Define the wave-drag coefficient as
Cpw = D,/qxS, where S is a suitable reference area for the body. In
supersonic flight, the flow is governed in part by its thermodynamic
properties, given by the specific heats at constant pressure ¢, and at
constant volume ¢,,. Define the ratio ¢, /¢, = y. Using Buckingham’s

pi theorem, show that Cp, ,, = f(M, v). Neglect the influence of friction.
Consider two different flows over geometrically similar airfoil shapes, one
airfoil being twice the size of the other. The flow over the smaller airfoil
has freestream propérties given by T, = 200 K, p,, = 1.23 kg/m”, and
Voo = 100 m/s. The flow over the larger airfoil is described by

Too =800 K, poo = 1.739 kg/m?, and V4, = 200 m/s. Assume that both 1
and a are proportional to 7'/, Are the two flows dynamically similar?
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1.10 Consider a Lear jet flying at a velocity of 250 m/s at an altitude of 10 km,

1.11

1.12

1.13

1.14
1.15

where the density and temperature are 0.414 kg/m® and 223 K,
respectively. Consider also a one-fifth scale model of the Lear jet being
tested in a wind tunnel in the laboratory. The pressure in the test section of
the wind tunnel is 1 atm = 1.01 x 10° N/m*. Calculate the necessary
velocity, temperature, and density of the airflow in the wind-tunnel test
section such that the lift and drag coefficients are the same for the
wind-tunnel model and the actual airplane in flight. Note: The relation
among pressure, density, and temperature is given by the equation of state
described in Problem 1.1.

A U-tube mercury manometer is used to measure the pressure at a point
on the wing of a wind-tunnel model. One side of the manometer is
connected to the model, and the other side is open to the atmosphere.
Atmospheric plessure and the density of liquid mercury are

1.01 x 10° N/m® and 1.36 x 10* kg/m®, respectively. When the
displacement of the two columns of mercury is 20 em, with the high
column on the model side, what is the pressure on the wing?

The German Zeppelins of World War I were dirigibles with the following

typical characteristics: volume = 15,000 m® and maximum diameter =

14.0 m. Consider a Zeppelin flying at a velocity of 30 m/s at a standard

altitude of 1000 m (look up the corresponding density in Appendix D).

The Zeppelin is at a small angle of attack such that its lift coefficient is

0.05 (based on the maximum cross-sectional area). The Zeppelin is flying

in straight-and-level flight with no acceleration. Calculate the total weight

of the Zeppelin.

Consider a circular cylinder in a hypersonic flow, with its axis

perpendicular to the flow. Let ¢ be the angle measured between radii

drawn to the leading edge (the stagnation point) and to any arbitrary point
on the cylinder. The pressure coefficient distribution along the cylindrical

surface is given by C, = 2cos’ ¢ for0 < ¢ < w/2and37/2 < ¢ < 27

and C, = Ofor /2 < ¢ < 37/2. Calculate the drag coefficient for the

cylinder, based on projected frontal area of the cylinder.

Derive Archimedes’ principle using a body of general shape.

Consider a light, single-engine, propeller-driven airplane similar to a

Cessna Skylane The airplane weight is 2950 1b and the wing reference

area is 174 ft. The drag coefficient of the airplane Cj, is a function of the

lift coefficient C;, for reasons that are given in Chapter 5; this function for
the given airplane is Cp = 0.025 + 0.054C3.

a. For steady, level flight at sea level, where the ambient atmospheric
density is 0.002377 sluofft3 plot on a graph the variation of C;, Cp,
and the lift-to-drag ratio L/D with flight velocity ranging between
70 ft/s and 250 ft/s.

b.  Make some observations about the variation of these quantities with
velocity.
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1.16

1.17

1.18

1.19

Consider a flat plate at zero angle of attack in a hypersonic flow at Mach
10 at standard sea level conditions. At a point 0.5 m downstream from the
leading edge, the local shear stress at the wall is 282 N/m?. The gas
temperature at the wall is equal to standard sea level temperature. At this
point, calculate the velocity gradient at the wall normal to the wall.

Consider the Space Shuttle during its atmospheric entry at the end of a

mission in space. At the altitude where the Shuttle has slowed to Mach 9,

the local heat transfer at a given point on the lower surface of the wing is

0.03 MW/m?. Calculate the normal temperature gradient in the air at this

point on the wall, assuming the gas temperature at the wall is equal to the

standard sea-level temperature.

The purpose of this problem is to give you a feel for the magnitude of

Reynolds number appropriate to real airplanes in actual flight.

a. Consider the DC-3 shown in Figure 1.1. The wing root chord length
(distance from the front to the back of the wing where the wing joins
the fuselage) is 14.25 ft. Consider the DC-3 flying at 200 miles per
hour at sea level. Calculate the Reynolds number for the flow over the
wing root chord. (This is an important number, because as we will see
later, it governs the skin-friction drag over that portion of the wing.)

b. Consider the F-22 shown in Figure 1.5, and also gracing the cover of
this book. The chord length where the wing joins the center body is
21.5 ft. Consider the airplane making a high-speed pass at a velocity
of 1320 ft/s at sea level (Mach 1.2). Calculate the Reynolds number at
the wing root.

For the design of their gliders in 1900 and 1901, the Wright brothers used

the Lilienthal Table given in Figure 1.65 for their aecrodynamic data. Based

on these data, they chose a design angle of attack of 3 degrees, and made
all their calculations of size, weight, etc., based on this design angle of
attack. Why do you think they chose three degrees?

Hint: From the table, calculate the ratio of lift to drag, L/D, at 3 degrees angle of
attack, and compare this with the lift-to-drag ratio at other angles of attack. You
might want to review the design box at the end of Section 1.8, especially Figure

1.36,

for the importance of L/D.




