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Response of a Seismic Accelerometer

The response can be modeled by the 
following differential equation:

kx
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dxcky
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Most measurement systems can 
be modeled as:
 Zero-Order
 First-Order
 Second Order
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The behavior is characterized by its static sensitivity, K and remains constant 
regardless of input frequency (ideal dynamic characteristic).

In zero-order systems, the measurement system responds to an input instantly.

It is useful for static inputs or static calibration.

Dynamic signals can also be measured but only at equilibrium conditions.

Zero-order system model is represented by:

where K = static sensitivity = b0/a0)()( 00 txbtya  )()( tKxty 

Zero-Order Systems
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Pencil-Type Pressure Gauge

AppKy atm )( 

))(/( atmppKAy Zero-order response equation is given by:
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forcing function)()()( tKxty
dt

tdy


First-Order Systems: Step Input

A first-order system is a measurement system that cannot respond to a change in 
input instantly.
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First-Order Systems: Step Response
Steady-state 

response
Error Fraction

63.2% response to 
input response

90% 99%
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First-Order Systems: Step Response

 Is called the time-constant – time it 
takes for the measurement system to 
respond to 63.2% of the input signal.
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First-Order Systems: Step Response

Thermometer & Energy Balance: Energy Balance:

Assumptions:
 Uniform temperature within the 
bulb (lumped analysis)
 Constant mass
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Periodic signals are encountered in many applications. Some examples are:

First-Order Systems: Frequency Response

Vehicle Suspension System

Reciprocating Pumps

Pulsed Detonation Engines
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Consider a first-order measuring system to which an input represented by the 
following equation is applied.

tKAy
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The complete 
solution:
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First-Order Systems: Frequency Response

Amplitude of steady 
state response

Phase-Shift
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The steady-state response of any system to which a periodic input of frequency, , is 
applied is known as the frequency response of that system.

First-Order Systems: Frequency Response

Time-lag

Amplitude-lag input

output
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The phase angle is )(tan)( 1     2/121
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
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BM

Dynamic error, () = M() - 1: a measure of an inability of a system to adequately 
reconstruct the amplitude of the input for a particular frequency.

First-Order Systems: Frequency Response

The ratio of the output signal amplitude to the signal amplitude is called magnitude 
ratio.

0.707 -3dB

dynamic error

Cut-off 
frequency



MECE 3320

A first order instrument is to measure signals with frequency content up to 100 Hz with an 
accuracy of 5%. What is the maximum allowable time constant? What will be the phase 
shift at 50 and 100 Hz?
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But for the first order system, the term                     can not be greater than 1  so that the 
constrain becomes    

1/1 22 

Solve this inequality give the range                          33.00 
The largest allowable time constant for the input frequency 100 Hz is

The phase shift at 50 and 100 Hz can be found from  arctan

This gives = -9.33o  and = -18.19o at 50 and 100 Hz respectively  
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First-Order Systems
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where

= the static sensitivity 

= the damping ratio, dimensionless

= the natural angular frequency 
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Second order systems are modeled by second order differential equations.
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Second-Order Systems
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The solution to the second order differential equation depends on the roots of the 
characteristic equation.
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This quadratic equation has two roots: 
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Overdamped ( > 1):

Critically damped ( = 1):

Underdamped (< 1): 

Depending on the value of , three forms of complementary solutions are 
possible
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Second-Order Systems

Animation courtesy of Dr. Dan Russell, Kettering University 

Undamped & Underdamped Second Order-Systems
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For a step input x(t)

Initial conditions: y = 0 at t  = 0, dy/dt = 0 at t  = 0

Solution:

Overdamped ( > 1):

Critically damped ( = 1):

Underdamped (< 1): 
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Second-Order Systems: Step Input
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21   ndRinging frequency:

d
dT


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Ringing period:

Second-Order Systems: Step Response

 Underdamped systems ( < 1):  Small rise time (90 % of input value),  Large 
settling time

 (10% of steady-state value, KA)
 Overdamped systems ( > 1):  Large rise time,  Small settling time
 Most measurement systems have damping ratios between 0.6 and 0.8.
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Typical response of the 2nd order system

Second-Order Systems: Step Response
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where

Let the input signal to the second-order system be of the form x(t) = Asint
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Second-Order Systems: Frequency Response
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Second-Order Systems: Frequency Response


