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Response of a Seismic Accelerometer
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The response can be modeled by the
following differential equation:

1 3 d’y dy

dx
M——+C——+Ky =C—+kx
dt dt dt

Damper
=l Body
"1 k € [/ surtace Most measurement systems can
be modeled as:
(b) Representation using mass,

spring, and damper o ZerO-Order
% First-Order
% Second Order




Zero-Order Systems

Zero-order system model is represented by:
a,Y(t) =byx(t) AOERCI] where K = static sensitivity = by/a,

The behavior is characterized by its static sensitivity, K and remains constant
regardless of input frequency (ideal dynamic characteristic).

In zero-order systems, the measurement system responds to an input instantly.
It is useful for static inputs or static calibration.

Dynamic signals can also be measured but only at equilibrium conditions.



Pencil-Type Pressure Gauge
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Zero-order response equation is given by: Bk (A/K)(P— Pam)




First-Order Systems: Step Input

A first-order system is a measurement system that cannot respond to a change in
Input instantly.
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First-Order Systems: Step Response

y(t)—y(o) otie /'

Suppose we rewrite the equation as

e, (1) = YO=1A

Yo—KA  y(0)—y(0)

#
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Output signal y(t)



First-Order Systems: Step Response

em — y(t) _ KA _ e—t/r
y(0) - KA

Ine, =2.3loge,, = 1L
.

7 Is called the time-constant — time it
takes for the measurement system to
respond to 63.2% of the input signal.
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MECE 3320

First-Order Systems: Step Response

Thermometer & Energy Balance:

Control volume

Bulb sensor

Qin

Assumptions:
Uniform temperature within the
bulb (lumped analysis)

Constant mass

Energy Balance:

e

v

mc % =hA[T, -T ()]

Rewriting, we obtain
mc, dT (t)

e +T(@) =T,

Solving the above differential equation gives,
TM=T,+[TO)-T "
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Periodic signals are encountered in many applications. Some examples are:

First-Order Systems: Frequency Response

Pulsed Detonation Engines
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Consider a first-order measuring system to which an input represented by the
following equation is applied.

First-Order Systems: Frequency Response

X(t) = Asin wt
rﬂ+ y = KAsin at
dt

sinfet—tan " o)

KA
The complete  y(t)=Ce™" +
solution: L+ (@7

\ J
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Transient Steady state _ Frequency
response  response ~ response

y(t) =Ce™" + B(w)sin[at + ¢(w)]
Amplitude of steady
state response B(w) = KA

[1+(cor)2]“2 dw)=—-tan"wr




@ First-Order Systems: Frequency Response

The steady-state response of any system to which a periodic input of frequency, w, Is
applied is known as the frequency response of that system.
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First-Order Systems: Frequency Response

The ratio of the output signal amplitude to the signal amplitude is called

M(w)=— =1 | )
KA [1+(a)r)2]“2 The phase angle is ¢(w) =—tan " (w7)
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Dynamic error, () = M(w) - 1. a measure of an inability of a system to adequately
reconstruct the amplitude of the input for a particular frequency.



First-Order Systems

Dynamic error = ( —1} x100%

1
Volr? +1

From the condition |Dynamic error| < 5%, it implies that (.95 < # <1.05
Jolr? +1
But for the first order system, the term 1/+/w?z% +1 can not be greater than 1 so that the
constrain becomes 1
0.95<———<1
Jolr? +1
Solve this inequality give the range 0 < wr<0.33

The largest allowable time constant for the input frequency 100 Hz is 7 = 033 _ 0.52ms

27100Hz

The phase shift at 50 and 100 Hz can be found from ¢ =—arctanwr

This gives ¢ =-9.33%°and = -18.19°at 50 and 100 Hz respectively



Second-Order Systems

Second order systems are modeled by second order differential equations.

d*y(t) dy(t)
dt? T4 dt

1 d®y(t) 2 dy(t)
_|_
o dt* o dt

n n

a,

+a,Y(t) = byX(t)

+ y(t) = Kx(t)

where

bO

K==L
aO

= the static sensitivity

¢= Zia = the damping ratio, dimensionless

a‘0
@, =\/a:2 = the natural angular frequency



Second-Order Systems

The solution to the second order differential equation depends on the roots of the
characteristic equation. . ,
—D? +—§ DENE)

2
n a)n

This quadratic equation has two roots:
Sl,Z - _é/a)n ia)n ng -1

Depending on the value of , three forms of complementary solutions are
possible

(—§+\/ﬁ)wnt N Cze(—g— 42—1ja)nt

Overdamped (¢ >1): Yo (t)=Ce
Critically damped (¢ = 1): Y, (1) =C,e "' +C,te™™

Underdamped (¢< 1): yoc(t):Ce‘ga’“tsin(a)n 1—§2t+CD)



Second-Order Systems

Undamped & Underdamped Second Order-Systems
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time

D 1996 <V . Spawow
modified by D.Russdl, 1997

Animation courtesy of Dr. Dan Russell, Kettering University



Second-Order Systems: Step Input

1dy 2§dy

= KAU (t
w? dt® - dt oy (®

For a step input x(t)

Initial conditions:y=0att =0, dy/dt =0att =0

Solution:

Overdamped (¢ > 1): {((/tx) (;\/7@— erleT e 42 \/L Nty

Critically damped (£ = 1): 3:8 =—(+ao,t)e™™ +1

-t
Underdamped (c<1): Yo €7 Gnli-2mt+g)+1
nderdamped (C< 1) KA \/]?5”]( ¢ o +¢)+



Output signal y(t)

Second-Order Systems: Step Response

2

y(0)

% Underdamped systems (£ < 1): Small (90 % of input value), Large

** (10% of steady-state value, KA)
% Overdamped systems (£ > 1): Large , Small
¢ Most measurement systems have damping ratios between 0.6 and 0.8.



Second-Order Systems: Step Response
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Second-Order Systems: Frequency Response

Let the input signal to the second-order system be of the form x(t) = Asinwt

y(t) =Yy, (t)+

where ¢(w)=—tan™

olo, -0, o

The steady state response is given by: y, ., (t) = B(e)sin[et + ¢(e)]

KA
B(w) =
b-(o1a, ] + 2010, |

The magnitude ratio is given by:

¢(w) =—tan™ %

/2 wlo -0 lo

B 1
M (0) ==
v KA {[1—(a)/con)2]2+(2§a)/con)2}l
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Second-Order Systems: Frequency Response
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