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GROWTH OF GALTON-WATSON TREES AND COMPLETE BINARY SUBTREES

Define

T5—1 = maximum height of a binary subtree
rooted at the ancestor.

Note that
o H=01if Z; < 2.

e /7 — 1 = maximum height of a unary sub-
tree rooted at the ancestor, i.e., 17 is the
extinction time of {Z,}.



RESULTS FOR BINARY SUBTREES 4 of 15

Consider

e 7y, = P(15 < 00) - there is no infinite bi-
nary subtree, i.e., the growth is slower than
binary splitting;

e 3 = P(T} < 00) - there is no infinite unary
subtree, i.e., extinction probability.

Theorem 1 |[Dekking (1991)] The probabil-
ity 7 is the smallest root in [0, 1] of

v = f(z)+ (1 - ) f'(x).

Main recurrent argument in the proof. If
Z1 = k, then the family tree does not contain a
binary subtree of height n + 1 iff

ek=0ork=1,or

e all of the k£ subtrees rooted at Z; do not
have a subtree of height n; or

e all but one of the k£ subtrees rooted at Z; do
not have a subtree of height n;

Therefore,
ta(n1) = potpit X A (n)+kas ™ () (1=2(n))py
Y(n+1) = flren) + (1= 7(n)f(12(n).



CRITICAL PHENOMENON 5 of 15

Theorem 2 [Dekking (1991)] Probability
~v9 cannot be a continuous function of the
offspring moments, nor of any other parameter

that depends continuously on pi, £ =0,1,...

There is a critical m5 > 1 such that

Yo =1, m < ms;
Yo < 1, m > ms.

This is qualitatively different to the behavior

of the extinction probability, when m{ = 1, and

71:17 mgla
Yo < 1, m > 1.

This difference occurs because

Ga(s) = f(s) + (1= s)f'(s),

is increasing but not convex; G5(1) = 0.



NUMBER OF BINARY SUBTREES WITH INFINITE HEIGHT
Let V5 be the number of distinct complete
binary subtrees with infinite height and rooted

at the ancestor.

Theorem 3 [Y. and Mutafchiev (2006)]
For y =0,1,2,...
241 (1 = 72)*

PV =3)= k:%j I FP ().

Consider the Taylor expansion of f(1) about
the point 75. Then P(V, = j) is the (j + 1)st

segment of length 2 in this expansion, i.e.,




GENERALIZATIONS FOR N-ARY (NN > 2) SUBTREES 7 of 15

Denote for N > 1

e /v = number of distinct complete N-ary
subtrees with infinite height rooted at the
ancestor.

ey = P(Vy =0) = P(Ty < o0) - there
is no infinite N-ary subtree rooted at the
ancestor.

Theorem 4 |[Pakes and Dekking (1991)]
v is the smallest root in [0, 1] of

N-1(1—z)" .

_ (4)
v Eo 7! fiw).

Theorem 5 [Y. and Mutafchiev (2006)]
For 7 =0,1,2,...and N > 1

P(Vy = ) is the (j + 1)st segment of length N

in the Taylor expansion of f(1) about yy.



LIMIT THEOREMS FOR THE MAXIMUM HEIGHT Ty OF A N-ARY SUBTREE

Denote for N > 2

N-1(1—s)/

GN(S):EO i F9s),

ay = Gy(v,) and  2by = G (vw).

Theorem 6 [L.. Mutafchiev (2008)]
Assume vy € (0,1) and N > 2. Then ay < 1.

(i) If ay < 1, then as n — oo
P(TN >N | Ty < OO) = CNCL?([ + O(a?\?),
where ¢y > 0 is certain constant.

(ii) If axy =1 and by < o0, then as n — oo

1

P(TN>77,’TN<OO>N .
YnONTY

Theorem 6 extends the results for

P(Z,>0)= P(1Ty > n).



LIMIT THEOREMS FOR THE MAXIMUM HEIGHT Ty OF A N-ARY SUBTREE

Theorem 7 [Pakes and Dekking (1991)]
Suppose vy = 1 and f™(1—) < oo. Then

P(Ty > n) ~ exp(—kyN") (n — o0),
where ky > 0 is certain constant.

The critical mean for geometric offspring is

m = (N — 1) (1—]1V)N.

Corollary 1 Consider geometric offspring.
(i) If m < m$, then as n — oo

P(Ty >n| Ty < 00) = cyay + O(ash),
where ¢y > 0 is certain constant.
(ii) If m = m$;, then as n — oo

2N 1
my—N+1n

P(TN>TL|TN<OO)N

(iii) If m > m$, then as n — oo

P(Tx > n) ~ exp(—kyN"),
where ky > 0 is certain constant.
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LIMIT THEOREMS FOR THE MAXIMUM HEIGHT Ty OF A N-ARY SUBTREE

Next results for Ty are obtained by letting

the initial population size 7 become large.

Theorem 8 [M. Mota and Y]

(i) If yw < 1 and ay < 1, then

lim P (a]_VTN <z | Ty < oo) = exp (—CN) :

1—00 i

where ¢y > 0 is certain constant.

(ii) If yv < 1, ay = 1, and fOV*D(1-) < oo,
then

1
limPZ-(TNgz'a:\TN<oo):eXp(_ )
o YNONT

(iii) If vy = 1 and f™)(1—) < oo, then

lim P; <exp (NTN) <ix | Ty < oo) = exp (—kN) :

1—00 T

where ky > 0 is certain constant.
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GEOMETRIC OFFSPRING 11 of 15
Let pr = (1 —p)p", k>0
The number of N-ary subtrees Vi is geometric
P(Vy =j) =l —w) (1 >1),
where yy is the smallest solution in [0, 1] of

1—z+1/m"=010-2)""

The critical value for m is

1 —1
mﬁv:(N—l)(l—N) and
the probability of not having a N-ary subtree

1N
vazl—(l—N) — 1 —e ! (N — o0)

The mean number of N-ary subtrees is

1 — A5 1
EVy = nyN — (N — 00).
TN e—1

N | 2 3 4 6 10 20 100

m?v 4 6.75 | 9.481 | 14.93 | 25.812 | 53.001 | 270.468

’)/]CV 0.75 ] 0.704 | 0.684 | 0.665 | 0.651 | 0.641 0.634

Table 1: Values of m§; and ~§ for geometric offspring.
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POISSON OFFSPRING

Poisson offspring: f(s) = ™1

The distribution of Vy is (7 =0,1,...)
P(Vy=j)=P(UN <Yy <jN+N—1),

12 of 15

m > 0.

where Yy is Poisson with mean m(1 — )

and 7y is the smallest solution in [0, 1] of

The critical offspring mean values are:

ms = 3.35, m5 = 5.15, my = 6.80, mg = 8.37.

V=1o] 1|2 | 3| 4|5 |6 | 7] 81| 9 |>10EW)
N =2/0| 0 [001]004]0.110.190.22|0.19 | 0.13 | 0.07 | 0.04 | 6.25
N =310]001]009]025]032/022/008[002| 0 | 0 [0.01| 4.00
N =410[005[030]041]019/004, 0 | 0 | 0 | 0 |0.01]| 287
N =50]017]051]028/004/ 0 | 0 | 0| 0 ] 0| 0| 219

Table 2: Probability distribution of Vi assuming Poisson offspring with

mean m = 13.
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ONE UNEXPECTED RESULT 13 of 15

Theorem 9 If vy < 1, then

- E(Zn‘TN>n> L —m
lim = N
= B(Z, | Ty > n) 1 — N

where

m — ]jiol 1,<1 — ) fU ()
e e )
(N — 1) g TN

Corollary 2 Consider geometric offspring.
Let the offspring mean equals the critical value,

i.e., m =mS%. Then for any N =23, ...

E(Z, | Ty > n)

¥ =y
% B(Ze | T > n)
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LINKS TO OTHER RESEARCH 14 of 15

e J. Chayes, L. Chayes, and R. Durrett (1988),

studying Mendelbrot’s percolation process
find a condition for v3 < 1, when f(s) =

(1—p+ps)

e In his study of reinforced random walks,
Pemantle (1988) introduces a concept of
N-infinite branching process. This notion

implies the existence of a N-ary subtree.

e There is a relationship between the N-ary
subtrees and the existence of a k-core in
a random graph, a concept introduced by
Bollabas (1984) and studied in relation to
Galton-Watson trees by Pittel et al. (1996)

and Riordan (2008).
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