On Complete N-ary Subtrees on Branching

Family Trees

George P. Yanev
Department of Mathematics,
University of Texas - Pan American,
Edinburg, USA
"Facts are the enemy of truth."

- from the play "Man of La Mancha"

Miguel de Cervantes

Workshop on Branching Processes and Their Applications, April 20-23, 2009, Badajoz, Spain

Outline

1. GALTON-WATSON PROCESSES THAT GROW FASTER THAN BINARY SPLITTING.

2. CRITICAL PHENOMENON.
3. Number of subtrees With infinite HEIGHT.
4. LIMIT THEOREMS FOR THE MAXIMUM HEIGHT OF A SUBTREE.
5. GEOMETRIC OFFSPRING.
6. Poisson OFFspring.
7. One unexpected RESULT.
8. LINKS TO OTHER RESEARCH.
9. REFERENCES.

Growth of Galton-Watson trees and complete binary subtrees

Define

$T_{2}-1=$ maximum height of a binary subtree rooted at the ancestor.

Note that

- $T_{2}=0$ if $Z_{1}<2$.
- $T_{1}-1=$ maximum height of a unary subtree rooted at the ancestor, i.e., T_{1} is the extinction time of $\left\{Z_{n}\right\}$.

Consider

- $\gamma_{2}=P\left(T_{2}<\infty\right)$ - there is no infinite binary subtree, i.e., the growth is slower than binary splitting;
- $\gamma_{1}=P\left(T_{1}<\infty\right)$ - there is no infinite unary subtree, i.e., extinction probability.

Theorem 1 [Dekking (1991)] The probability γ_{2} is the smallest root in $[0,1]$ of

$$
x=f(x)+(1-x) f^{\prime}(x) .
$$

Main recurrent argument in the proof. If $Z_{1}=k$, then the family tree does not contain a binary subtree of height $n+1$ iff

- $k=0$ or $k=1$, or
- all of the k subtrees rooted at Z_{1} do not have a subtree of height n; or
- all but one of the k subtrees rooted at Z_{1} do not have a subtree of height n;

Therefore,

$$
\begin{aligned}
& \gamma_{2}(n+1)=p_{0}+p_{1}+\sum_{k=2}^{\infty}\left[\gamma_{2}^{k}(n)+k \gamma_{2}^{k-1}(n)\left(1-\gamma_{2}(n)\right)\right] p_{k} \\
& \gamma_{2}(n+1)=f\left(\gamma_{2}(n)\right)+\left(1-\gamma_{2}(n)\right) f^{\prime}\left(\gamma_{2}(n)\right)
\end{aligned}
$$

Theorem 2 [Dekking (1991)] Probability

γ_{2} cannot be a continuous function of the
offspring moments, nor of any other parameter that depends continuously on $p_{k}, k=0,1, \ldots$

There is a critical $m_{2}^{c}>1$ such that

$$
\left\{\begin{array}{l}
\gamma_{2}=1, m<m_{2}^{c} \\
\gamma_{2}<1, m \geq m_{2}^{c}
\end{array}\right.
$$

This is qualitatively different to the behavior of the extinction probability, when $m_{1}^{c}=1$, and

$$
\left\{\begin{array}{l}
\gamma_{1}=1, m \leq 1 \\
\gamma_{2}<1, m>1
\end{array}\right.
$$

This difference occurs because

$$
G_{2}(s)=f(s)+(1-s) f^{\prime}(s)
$$

is increasing but not convex; $G_{2}^{\prime}(1)=0$.

Number of binary subtrees with infinite height

Let V_{2} be the number of distinct complete

binary subtrees with infinite height and rooted at the ancestor.

Theorem 3 [Y. and Mutafchiev (2006)] For $j=0,1,2, \ldots$.

$$
P\left(V_{2}=j\right)=\sum_{k=2 j}^{2 j+1} \frac{\left(1-\gamma_{2}\right)^{k}}{k!} f^{(k)}\left(\gamma_{2}\right)
$$

Consider the Taylor expansion of $f(1)$ about the point γ_{2}. Then $P\left(V_{2}=j\right)$ is the $(j+1)$ st segment of length 2 in this expansion, i.e.,

$$
\begin{aligned}
& P\left(V_{2}=0\right)=f\left(\gamma_{2}\right)+\left(1-\gamma_{2}\right) f^{\prime}\left(\gamma_{2}\right) \\
& P\left(V_{2}=1\right)=\frac{\left(1-\gamma_{2}\right)^{2}}{2!} f^{\prime \prime}\left(\gamma_{2}\right)+\frac{\left(1-\gamma_{2}\right)^{3}}{3!} f^{\prime \prime \prime}\left(\gamma_{2}\right)
\end{aligned}
$$

$$
P\left(V_{2}=j\right)=\frac{\left(1-\gamma_{2}\right)^{2 j}}{(2 j)!} f^{(2 j)}\left(\gamma_{2}\right)+\frac{\left(1-\gamma_{2}\right)^{2 j+1}}{(2 j+1)!} f^{(2 j+1)}\left(\gamma_{2}\right)
$$

Denote for $N \geq 1$

- $V_{N}=$ number of distinct complete N-ary subtrees with infinite height rooted at the ancestor.
- $\gamma_{N}=P\left(V_{N}=0\right)=P\left(T_{N}<\infty\right)$ - there is no infinite N-ary subtree rooted at the ancestor.

Theorem 4 [Pakes and Dekking (1991)] γ_{N} is the smallest root in $[0,1]$ of

$$
x=\sum_{i=0}^{N-1} \frac{(1-x)^{i}}{i!} f^{(i)}(x)
$$

Theorem 5 [Y. and Mutafchiev (2006)] For $j=0,1,2, \ldots$ and $N \geq 1$

$$
P\left(V_{N}=j\right)=\sum_{k=j N}^{j N+N+1} \frac{\left(1-\gamma_{2}\right)^{k}}{k!} f^{(k)}\left(\gamma_{2}\right)
$$

$P\left(V_{N}=j\right)$ is the $(j+1)$ st segment of length N in the Taylor expansion of $f(1)$ about γ_{N}.

Limit theorems for the maximum height T_{N} of a N-ary subtree
Denote for $N \geq 2$

$$
\begin{gathered}
G_{N}(s)=\sum_{j=0}^{N-1} \frac{(1-s)^{j}}{j!} f^{(j)}(s), \\
a_{N}=G_{N}^{\prime}\left(\gamma_{n}\right) \quad \text { and } \quad 2 b_{N}=G_{N}^{\prime \prime}\left(\gamma_{N}\right) .
\end{gathered}
$$

Theorem 6 [L. Mutafchiev (2008)]
Assume $\gamma_{N} \in(0,1)$ and $N \geq 2$. Then $a_{N} \leq 1$.
(i) If $a_{N}<1$, then as $n \rightarrow \infty$
$P\left(T_{N}>n \mid T_{N}<\infty\right)=c_{N} a_{N}^{n}+O\left(a_{N}^{2 n}\right)$,
where $c_{N}>0$ is certain constant.
(ii) If $a_{N}=1$ and $b_{N}<\infty$, then as $n \rightarrow \infty$

$$
P\left(T_{N}>n \mid T_{N}<\infty\right) \sim \frac{1}{\gamma_{N} b_{N} n} .
$$

Theorem 6 extends the results for
$P\left(Z_{n}>0\right)=P\left(T_{1}>n\right)$.

Theorem 7 [Pakes and Dekking (1991)]
Suppose $\gamma_{N}=1$ and $f^{(N)}(1-)<\infty$. Then

$$
P\left(T_{N}>n\right) \sim \exp \left(-k_{N} N^{n}\right) \quad(n \rightarrow \infty)
$$

where $k_{N}>0$ is certain constant.
The critical mean for geometric offspring is

$$
m_{N}^{c}=(N-1)\left(1-\frac{1}{N}\right)^{-N}
$$

Corollary 1 Consider geometric offspring.
(i) If $m<m_{N}^{c}$, then as $n \rightarrow \infty$

$$
P\left(T_{N}>n \mid T_{N}<\infty\right)=c_{N} a_{N}^{n}+O\left(a_{N}^{2 n}\right)
$$

where $c_{N}>0$ is certain constant.
(ii) If $m=m_{N}^{c}$, then as $n \rightarrow \infty$

$$
P\left(T_{N}>n \mid T_{N}<\infty\right) \sim \frac{2 N}{m_{N}^{c}-N+1} \frac{1}{n}
$$

(iii) If $m>m_{N}^{c}$, then as $n \rightarrow \infty$

$$
P\left(T_{N}>n\right) \sim \exp \left(-k_{N} N^{n}\right)
$$

where $k_{N}>0$ is certain constant.

Next results for T_{N} are obtained by letting the initial population size i become large.

Theorem 8 [M. Mota and Y.]

(i) If $\gamma_{N}<1$ and $a_{N}<1$, then
$\lim _{i \rightarrow \infty} P_{i}\left(a_{N}^{-T_{N}} \leq i x \mid T_{N}<\infty\right)=\exp \left(-\frac{c_{N}}{x}\right)$,
where $c_{N}>0$ is certain constant.
(ii) If $\gamma_{N}<1, a_{N}=1$, and $f^{(N+1)}(1-)<\infty$,
then
$\lim _{i \rightarrow \infty} P_{i}\left(T_{N} \leq i x \mid T_{N}<\infty\right)=\exp \left(-\frac{1}{\gamma_{N} b_{N} x}\right)$
(iii) If $\gamma_{N}=1$ and $f^{(N)}(1-)<\infty$, then
$\lim _{i \rightarrow \infty} P_{i}\left(\exp \left(N^{T_{N}}\right) \leq i x \mid T_{N}<\infty\right)=\exp \left(-\frac{k_{N}}{x}\right)$, where $k_{N}>0$ is certain constant.

Let $p_{k}=(1-p) p^{k}, \quad k \geq 0$.
The number of N-ary subtrees V_{N} is geometric

$$
P\left(V_{N}=j\right)=\gamma_{N}\left(1-\gamma_{N}\right)^{j} \quad(j \geq 1)
$$

where γ_{N} is the smallest solution in $[0,1]$ of

$$
(1-x+1 / m)^{N}=(1-x)^{N-1}
$$

The critical value for m is

$$
m_{N}^{c}=(N-1)\left(1-\frac{1}{N}\right)^{-1} \quad \text { and }
$$

the probability of not having a N-ary subtree

$$
\gamma_{N}^{c}=1-\left(1-\frac{1}{N}\right)^{N} \rightarrow 1-e^{-1} \quad(N \rightarrow \infty)
$$

The mean number of N-ary subtrees is

$$
E V_{N}^{c}=\frac{1-\gamma_{N}^{c}}{\gamma_{N}^{c}} \rightarrow \frac{1}{e-1} \quad(N \rightarrow \infty)
$$

N	2	3	4	6	10	20	100
m_{N}^{c}	4	6.75	9.481	14.93	25.812	53.001	270.468
γ_{N}^{c}	0.75	0.704	0.684	0.665	0.651	0.641	0.634

Table 1: Values of m_{N}^{c} and γ_{N}^{c} for geometric offspring.

Poisson offspring: $f(s)=e^{m(s-1)}, \quad m>0$.
The distribution of V_{N} is $(j=0,1, \ldots)$

$$
P\left(V_{N}=j\right)=P\left(j N \leq Y_{N} \leq j N+N-1\right)
$$

where Y_{N} is Poisson with mean $m\left(1-\gamma_{N}\right)$ and γ_{N} is the smallest solution in $[0,1]$ of

$$
x e^{m(1-x)}=\sum_{i=0}^{N-1} \frac{m^{i}}{i!}(1-x)^{i}
$$

The critical offspring mean values are: $m_{2}^{c}=3.35, m_{3}^{c}=5.15, m_{4}^{c}=6.80, m_{5}^{c}=8.37$.

$V_{N}=$	0	1	2	3	4	5	6	7	8	9	≥ 10	$E\left(V_{N}\right)$
$N=2$	0	0	0.01	0.04	0.11	0.19	0.22	0.19	0.13	0.07	0.04	6.25
$N=3$	0	0.01	0.09	0.25	0.32	0.22	0.08	0.02	0	0	0.01	4.00
$N=4$	0	0.05	0.30	0.41	0.19	0.04	0	0	0	0	0.01	2.87
$N=5$	0	0.17	0.51	0.28	0.04	0	0	0	0	0	0	2.19

Table 2: Probability distribution of V_{N} assuming Poisson offspring with mean $m=13$.

Theorem 9 If $\gamma_{N}<1$, then

$$
\lim _{n \rightarrow \infty} \frac{E\left(Z_{n} \mid T_{N}>n\right)}{E\left(Z_{n} \mid T_{1}>n\right)}=\alpha_{N} \frac{1-\gamma_{1}}{1-\gamma_{N}}
$$

where

$$
\alpha_{N}=\frac{m-\sum_{j=0}^{N-1} \frac{1}{j!}\left(1-\gamma_{N}\right)^{j} f^{(j+1)}\left(\gamma_{N}\right)}{m-\frac{1}{(N-1)!}\left(1-\gamma_{N}\right)^{N-1} f^{(N)}\left(\gamma_{N}\right)}
$$

Corollary 2 Consider geometric offspring.
Let the offspring mean equals the critical value, i.e., $m=m_{N}^{c}$. Then for any $N=2,3, \ldots$

$$
\lim _{n \rightarrow \infty} \frac{E\left(Z_{n}^{c} \mid T_{N}^{c}>n\right)}{E\left(Z_{n}^{c} \mid T_{1}^{c}>n\right)}=2
$$

- J. Chayes, L. Chayes, and R. Durrett (1988), studying Mendelbrot's percolation process find a condition for $\gamma_{8}<1$, when $f(s)=$ $(1-p+p s)^{9}$.
- In his study of reinforced random walks,

Pemantle (1988) introduces a concept of N-infinite branching process. This notion implies the existence of a N-ary subtree.

- There is a relationship between the N-ary subtrees and the existence of a k-core in
a random graph, a concept introduced by
Bollabàs (1984) and studied in relation to Galton-Watson trees by Pittel et al. (1996) and Riordan (2008).
F.M. Dekking, Branching processes that grow faster than binary splitting, Amer. Math. Monthly 98, 728-731, 1991.
A.G. Pakes and F.M. Dekking, On family trees and subtrees of simple branching processes, J. Theoret. Probab. 4, 353-369, 1991.
G.P. Yanev and L. Mutafchiev, Number of complete N-ary subtrees on Galton-Watson family tree, Methodol. Comput. Appl. Probab. 8, 223-233, 2006.
L. Mutafchiev, Survival probabilities for N ary subtrees on a Galton-Watson family tree, Statist. \& Probab. Letters 78, 2165-2170, 2008.

