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Abstract

We characterize the exponential distribution in terms of the regression of
a record value with two non-adjacent record values as covariates. We also
study characterizations based on the regression of linear combinations of
record values.
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1 Introduction and results

There is a number of studies on characterizations of probability distri-
butions by means of regression relations of one record value with one or
two other record values as covariates. For a recent review paper on the
subject we refer to Pakes (2004), see also Ahsanullah and Raqab (2006),
Chapter 6. To formulate and discuss our results we need to introduce
some notations. Let X1, X2, . . . be independent copies of a random vari-
able X with absolutely continuous (with respect to the Lebesgue measure)
distribution function F (x). An observation Xj is called a (upper) record
value if it exceeds all previous observations, i.e., Xj is a (upper) record if
Xj > Xi for all i < j. If we define the record times sequence by T1 = 1
and Tn = min{j : Xj > XTn−1 , j > Tn−1}, for n > 1, then the correspond-
ing record values are Rn = XTn , n = 1, 2, . . . Let F (x) be the cumulative
distribution function of an exponential distribution given by

F (x) = 1− e−c(x−lF ), −∞ < lF ≤ x, (1.1)
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where c > 0 is an arbitrary constant. Let us mention that (1.1) with lF > 0
appears, for example, in reliability studies where lF represents the guarantee
time; that is, failure cannot occur before lF units of time have elapsed (see
Barlow and Proschan (1996), p.13).

Bairamov et al. (2005) study characterizations of exponential and related
distributions in terms of the regression of Rn with two adjacent record values
as covariates. They prove that F (x) is exponential if and only if

E[h′(Rn)|Rn−1 = u,Rn+1 = v] =
h(v)− h(u)

v − u
, lF < u < v, (1.2)

where the function h satisfies some regularity conditions. Let us note that
if (1.2) holds, then by the mean-value theorem, there exists at least one
number ξ inside the interval (u, v) such that for u > lF

E[h′(Rn)|Rn−1 = u,Rn+1 = v] = h′(ξ).

In particular, if h′(x) = x then (1.2) becomes

E[Rn|Rn−1 = u,Rn+1 = v] =
u+ v

2
, lF < u < v.

Yanev et al. (2008) extend (1.2) to the case when at least one of the two
covariates is adjacent to Rn. To formulate their result, we need to introduce
some notations. Further on, for a given h(x), we denote

M(u, v) =
h(v)− h(u)

v − u
, iMj(u, v) =

∂i+j

∂ui∂vj

(
h(v)− h(u)

v − u

)
, u 6= v,

as well as iM(u, v) and Mj(u, v) for the ith and jth partial derivative of
M(u, v) with respect to u and v, respectively. Let k and n be integers, such
that 1 ≤ k ≤ n − 1. When at least one of the covariate record values is
adjacent to Rn, it is shown in Yanev et al. (2008), under some regularity
assumptions, that F (x) is exponential if and only if

E[h(k)(Rn)|Rn−k = u,Rn+1 = v] = kMk−1(u, v), lF < u < v. (1.3)

In particular, if h(x) = xk+1/(k + 1)!, then h(k)(x) = x and (1.3) becomes

E[Rn|Rn−k = u,Rn+1 = v] =
u+ kv

k + 1
, lF < u < v. (1.4)
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Observe that the right-hand side of (1.4) is the weighted mean of the covari-
ates with weights equal to the number of spacings they are away from Rn.
One can also see (using the arguments in Yanev et al. (2008)) that for r ≥ 1

E[Rn|Rn−1 = u,Rn+r = v] =
ru+ v

r + 1
, lF < u < v (1.5)

characterizes the exponential distribution too.

If both covariates are non-adjacent to Rn the situation is more complex.
Let k, r, and n be integers, such that 1 ≤ k ≤ n − 1 and r ≥ 1. Yanev et
al (2008) obtain a necessary condition for exponentiality of F (x). Namely,
they prove, under some regularity assumptions, that if F (x) is exponential,
then for lF < u < v

E[h(k+r+1)(Rn)|Rn−k = u,Rn+r = v] =
(k + r − 1)!

(k − 1)!(r − 1)! r−1Mk−1(u, v).

However, no sufficient condition for F (x) to be exponential that involves
only single regression of Rn on two non-adjacent covariates is known yet.
For example, in Yanev et al. (2008) the necessary and sufficient condition
for F (x) to be exponential is that both

E[Rn|Rn−k = u,Rn+r = v] =
ru+ kv

k + r
, lF < u < v

and

E[Rn|Rn−k+1 = s,Rn+r = v] =
rs+ (k − 1)v
k + r − 1

, lF < s < v

hold. Our first result provides new sufficient and necessary conditions for
(1.1) when both covariates are non-adjacent to Rn. The conditions given
below are written in a form which extends (1.3). They are alternative to
and more compact than the results in Theorem 1B of Yanev et al. (2008).
We have the following theorem.

Theorem 1. Let k, r, and n be integers, such that 1 ≤ k ≤ n − 1 and
r ≥ 1. Assume that F (x) is absolutely continuous. Suppose h(x) satisfies

(i) h(x) is continuous in [lF ,∞) and h(k+r−1)(x) is continuous in (lF ,∞);

(ii) r−1Mk(lF , v) 6= 0 for v > lF .

Then F (x) is the exponential cdf (1.1) if and only if for lF < u < s < v

k − 1
r−1Mk−1(u, v)

E
[
h(k+r−1)(Rn) | Rn−k = u,Rn+r = v

]
(1.6)

=
k + r − 1

r−1M ′k−2(s, v)
E
[
h(k+r−1)(Rn) | Rn−k+1 = s,Rn+r = v

]
,
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where M ′(u, v) = [h′(v)− h′(u)]/(v − u).

Notice that, setting r = 1 and k = 2 and letting s → v−, one can see
that (1.6) reduces to (1.3) for the case k = 2. We illustrate the applicability
of Theorem 1 with one corollary below. Let h(x) = xk+r/(k + r)! and thus
h(k+r−1)(x) = x. It is not difficult to see that with this choice of h(x)

M(u, v) =
vk+r−1 + . . .+ vkur−1 + vk−1ur + . . .+ uk+r−1

(k + r)!

and
(k + r − 1)!

(k − 1)!(r − 1)! r−1Mk−1(u, v) =
ru+ kv

k + r
.

Now, Theorem 1 implies the following corollary.

Corollary 1 Let k, r and n be integers, such that 1 ≤ k ≤ n − 1 and
r ≥ 1. Suppose F (x) is absolutely continuous. Then F (x) is the exponential
cdf (1.1) if and only if for lF < u < s < v

k + r

ru+ kv
E [Rn|Rn−k = u,Rn+r = v]=

k + r − 1
rs+ (k − 1)v

E [Rn|Rn−k+1 = s,Rn+r = v] .

Corollary 1 gives a characterization of (1.1), which is alternative to that
in Theorem 2B of Yanev et al. (2008), mentioned before Theorem 1 above.

Next we turn our attention to characterizations based on regressions of
differences (spacings) of two record values. Consider the Weibull distribution
given for α > 0 by its cdf

F (x) = 1− e−cxα , x ≥ 0, (1.7)

where c > 0 is an arbitrary constant. Akhundov and Nevzorov (2008) study
the regression of spacings of record values as follows

E[R3 −R2|R1 = u,R4 = v] =
v − u

3
, u < v. (1.8)

If F (x) is the exponential (1.1) then it is clear that (1.4) and (1.5) lead to
(1.8). Since (1.8) is a weaker condition than (1.4) (or (1.5)), it is not a suffi-
cient condition for F (x) to be exponential. Akhundov and Nevzorov (2008)
prove the interesting fact that there is only one more family of distributions,
other than the exponential, that satisfies (1.8). It turns out that (1.8) holds
if and only if F (x) satisfies (1.7) with either α = 1 or α = 1/2. Making use of
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the findings in Yanev et al. (2008) and Theorem 1 above, we generalize this
result in two directions: (i) considering Rm−Rn for any 2 ≤ m ≤ n−1; and
(ii) in the case of non-adjacent covariates. The following characterization
result holds.

Theorem 2. Let k, r, m and n be integers, such that 1 ≤ k ≤ m − 1,
r ≥ 1, and 2 ≤ m ≤ n − 1. Suppose F (x) is absolutely continuous. Then
F (x) is given by (1.7) with α = 1 or α = 1/2 if and only if for 0 < u < s <
t < v <∞

d+ 2
v − u

E [Rn −Rm| Rm−k = u,Rn+r = v] (1.9)

=
d

t− s
E [Rn −Rm|Rm−k+1 = s,Rn+r−1 = t] ,

where d = n−m+ k + r − 2.

Setting n = m+ 1 in (1.9) we obtain the following result.

Corollary 2. Let k, r and m be integers, such that 1 ≤ k ≤ m − 1,
r ≥ 1. Suppose F (x) is absolutely continuous. Then F (x) is given by (1.7)
with α = 1 or α = 1/2 if and only if for 0 < u < v <∞

E [Rm+1 −Rm | Rm−k = u,Rm+r+1 = v] =
k + r − 1
k + r + 1

(v − u).

Setting k = r = 1 in (1.9) we obtain a corollary for adjacent covariates.

Corollary 3. Let m and n be integers, such that 2 ≤ m ≤ n−1. Suppose
F (x) is absolutely continuous. Then F (x) is given by (1.7) with α = 1 or
α = 1/2 if and only if for 0 < u < v <∞

E [Rn −Rm | Rm−1 = u,Rn+1 = v] =
n−m

n−m+ 2
(v − u).

Corollary 3 can be interpreted as follows. Let us fix the integers m and
n, such that 2 ≤ m < n. According to (1.4) and (1.5), the conditional
expectations of the spacings Rm − Rm−1 and Rn+1 − Rn given Rm−1 = u
and Rn+1 = v are equal and their sum is 2(v − u)/(n−m+ 2), that is

E[Rm −Rm−1|Rm−1 = u,Rn+1 = v] = E[Rn+1 −Rn|Rm−1 = u,Rn+1 = v]

=
v − u

n−m+ 2
,
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if and only if F (x) is exponential. Now, assume that it is only known that
the conditional expectations above have a sum 2(v− u)/(n−m+ 2), that is

E[Rm −Rm−1|Rm−1 = u,Rn+1 = v] + E[Rn+1 −Rn|Rm−1 = u,Rn+1 = v]

=
2(v − u)
n−m+ 2

. (1.10)

This is equivalent to

E[Rn −Rm|Rm−1 = u,Rn+1 = v]
= E[Rn+1 −Rm−1|Rm−1 = u,Rn+1 = v]− E[Rm −Rm−1|Rm−1 = u,Rn+1 = v]
−E[Rn+1 −Rn|Rm−1 = u,Rn+1 = v]

= v − u− 2(v − u)
n−m+ 2

=
n−m

n−m+ 2
(v − u).

Therefore, according to Corollary 3, (1.10) holds if and only if the underlying
distribution is either exponential or Weibull with α = 1/2.

Finally, we investigate the regression

1
cv − du

E [aRn − bRm | Rm−k = u,Rn+r = v] , lF < u < v,

where a, b, c and d with a 6= b are some real numbers. What choice of these
numbers characterizes the exponential distribution alone? The theorem be-
low answers this question.

Theorem 3. Let k, r, m and n be integers, such that 1 ≤ k ≤ m − 1,
r ≥ 1, and 2 ≤ m ≤ n − 1. Suppose F (x) is absolutely continuous. Then
F (x) is exponential given by (1.1) if and only if for lF < s < u < v < t

E [kRn − (n−m+ k)Rm|Rm−k = u,Rn+r = v] (1.11)

=
du

(d+ 1)s− t
E [kRn − (n−m+ k)Rm|Rm−k+1 = s,Rn+r−1 = t] ,

where d = n−m+ k + r − 2.

Setting k = r = 1 in (1.11) we obtain

E [Rn − (n−m+ 1)Rm | Rm−1 = u,Rn+1 = v] = (m− n)u.

Therefore, we have the following corollary.
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Corollary 4. Let m and n be integers, such that 2 ≤ m ≤ n−1. Suppose
F (x) is absolutely continuous. Then F (x) is exponential given by (1.1) if
and only if for lF < u < v

E [Rn − (n−m)Rm | Rm−1 = u,Rn+1 = v] (1.12)
= E [Rm − (n−m)Rm−1|Rm−1 = u,Rn+1 = v] .

It is interesting to note that setting n = m+1 the condition (1.12) becomes

E[Rm+1−Rm|Rm−1 = u,Rm+2 = v] = E[Rm−Rm−1|Rm−1 = u,Rm+2 = v].

We shall prove the results presented here in the next three sections.

2 Proof of Theorem 1

Sufficiency. Denote the cumulative hazard function of the cdf F (x) by
Hx = − ln(1 − F (x)). Also, for simplicity, we will sometimes write Wx,y =
Hy − Hx. Referring to the Markov dependence of the record values, one
can show (e.g., Ahsanullah (2008)) that the conditional density of Rn given
Rn−i = u and Rn+j = v is for 1 ≤ i ≤ n− 1 and j ≥ 1

f(t) =
(i+ j − 1)!

(i− 1)!(j − 1)!
W i−1
u,t W

j−1
t,v

W i+j−1
u,v

H ′t. (2.1)

Assuming (1.6), we will show that F (x) satisfies (1.1). Denote d = k+ r−2.
Referring to (2.1), it is not difficult to obtain

E
[
h(d+1)(Rn)|Rn−k = u,Rn+r = v

]
=

(d+ 1)!
(k − 1)!(r − 1)!W d+1

u,v

∫ v

u
h(d+1)(x)W k−1

u,x W
r−1
x,v dHx

=
(d+ 1)!

(k − 1)!(r − 1)!W d+1
u,v

I(u, v; k, r) say,

and

E
[
h(d+1)(Rn)|Rn−k+1 = s,Rn+r = v

]
=

d!
(k − 2)!(r − 1)!W d

s,t

∫ v

s
h(d+1)(x)W k−2

s,x W r−1
x,v dHx

=
d!

(k − 2)!(r − 1)!W d
s,t

I(s, v; k − 1, r) say.
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Now, one can see that (1.6) is equivalent to

I(u, v; k, r)
I(s, v; k − 1, r) r−1M

′
k−2(s, v)W d

s,v = r−1Mk−1(u, v)W d+1
u,v . (2.2)

Differentiating (2.2) with respect to u and letting s→ u+, we have

−(k − 1) r−1M
′
k−2(u, v)W d

u,vH
′
u

= rMk−1(u, v)W d+1
u,v − (k + r − 1) r−1Mk−1(u, v)W d

u,vH
′
u.

Dividing by W d+1
u,v and grouping, we arrive at the equation

H ′u
Hu −Hv

= rMk−1(u, v)
(k − 1) r−1M ′k−2(u, v)− (k + r − 1) r−1Mk−1(u, v)

, (2.3)

provided that the denominator in the right-hand side is not zero. (This is
equivalent to the assumption rMk−1(u, v) 6= 0, as we will see below.) Since

r−1M
′
k−2(u, v) =

∂k+r−3

∂ur−1∂vk−2

[
h′(v)− h′(u)

v − u

]
=

∂k+r−3

∂ur−1∂vk−2
[M1(u, v) + 1M(u, v)]

= r−1Mk−1(u, v) + rMk−2(u, v),

for the denominator in the right-hand side of (2.3) we have

(k − 1) r−1M
′
k−2(u, v)− (k + r − 1) r−1Mk−1(u, v) (2.4)

= (k − 1)[ r−1Mk−1(u, v) + rMk−2(u, v)]− (k + r − 1) r−1Mk−1(u, v)
= (k − 1) rMk−2(u, v)− r r−1Mk−1(u, v)
= rMk−1(u, v)(u− v).

The last equality follows from Lemma 1 in Yanev et al. (2008). Now, (2.3)
and (2.4) imply

H ′u
Hu −Hv

=
1

u− v
.

Integrating both sides with respect to u from lF to v, we obtain

ln(Hv −HlF ) = ln(v − lF ) + ln c, c > 0

and thus Hv = c(v − lF ) which implies (1.1).
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Necessity. According to Theorem 1B in Yanev et al. (2008), if F (x)
satisfies (1.1), then

E[h(k+r−1)(Rn)|Rn−k = u,Rn+r = v] =
(k + r − 1)!

(k − 1)!(r − 1)! r−1Mk−1(u, v)

and

E[h(k+r−1)(Rn)|Rn−k+1 = s,Rn+r = v] =
(k + r − 2)!

(k − 2)!(r − 1)! r−1M
′
k−2(s, v).

These two equalities imply (1.6). This completes the proof of the theorem.

3 Proof of Theorem 2

To prove Theorem 2 we will need the following three lemmas.

Lemma 1 (Akhundov and Nevzorov (2008)) Let F (x) be absolutely con-
tinuous. The equation

Hv −Hu =
2H ′uH

′
v

H ′u +H ′v
(v − u), 0 < u < v <∞

has exactly two solutions given by F (x) = 1 − exp{−cxα} for α = 1 or
α = 1/2, where c > 0 is an arbitrary constant.

The following lemma is a straightforward corollary of Lemma 2 in Yanev
et al. (2008).

Lemma 2 Let k, r and n be integers such that 1 ≤ k ≤ n− 1 and r ≥ 1.
If F (x) = 1 − exp{−c(x − lF )}, (lF < x < ∞), where c > 0 is an arbitrary
constant, then

E[Rn|Rn−k = u,Rn+r = v] =
ru+ kv

k + r
, lF < u < v <∞.

Lemma 3 Let a and b > a be real numbers and i and j be positive integers.
Then

I =
∫ b

a
[(y−a)j(b−y)i−(y−a)i(b−y)j ]y2 dy =

i!j!(j − i)
(i+ j + 2)!

(b−a)i+j+1(b2−a2).

Proof. We have

I =
∫ b

a
(y − a)j(b− y)iy2 dy −

∫ b

a
(y − a)i(b− y)jy2 dy (3.1)

= I1 − I2.
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Making in I1 the change of variables w = (y − a)/(b− a), we obtain

I1 = (b− a)i+j+1

∫ 1

0
wj(1− w)i[(b− a)w + a]2dw. (3.2)

Similarly, making in I2 the change of variables w = (b− y)/(b− a), we have

I2 = (b− a)i+j+1

∫ 1

0
wj(1− w)i[b− (b− a)w]2dw. (3.3)

From (3.2) and (3.3), we have

I = (b− a)i+j+1

∫ 1

0
wj(1− w)i{[(b− a)w + a]2 − [b− (b− a)w]2}dw

= (b− a)i+j+2(b+ a)[2B(j + 2, i+ 1)−B(j + 1, i+ 1)]

= (b− a)i+j+1(b2 − a2)B(j + 1, i+ 1)
(

2
j + 1

i+ j + 2
− 1
)

= (b− a)i+j+1(b2 − a2)
i!j!(j − i)

(i+ j + 2)!
,

which proves the lemma.

Proof of Theorem 2. Sufficiency. We shall prove that (1.9) implies
(1.7) with either α = 1 or α = 1/2. First, assume that 1 ≤ k ≤ m − 1 and
r ≥ 2. Referring to (2.1), one can obtain (recall that d = n−m+ k+ r− 2)

E[Rn −Rm|Rm−k = u,Rn+r = v] (3.4)

=
(d+ 1)!
W d+1
u,v

∫ v

u

[
W d−r+1
u,x W r−1

x,v

(d− r + 1)!(r − 1)!
−

W k−1
u,x W

d−k+1
x,v

(k − 1)!(d− k + 1)!

]
xdHx

=
(d+ 1)!
W d+1
u,v

I(u, v; k, r), say,

and

E[Rn −Rm|Rm−k+1 = u,Rn+r−1 = v] (3.5)

=
(d− 1)!
W d−1
s,t

∫ t

s

[
W d−r
s,x W r−2

x,t

(d− r)!(r − 2)!
−

W k−2
s,x W d−k

x,t

(k − 2)!(d− k)!

]
xdHx

=
(d− 1)!
W d−1
s,t

I(s, t; k − 1, r − 1), say.



Record values 83

Now, making use of (3.4) and (3.5), we can write (1.9) as

(d+ 1)!I(u, v; k, r)
(d− 1)!I(s, t; k − 1, r − 1)

(t− s)W d−1
s,t = (v − u)W d+1

u,v . (3.6)

Let us differentiate both sides of (3.6) with respect to u and v. Then, after
letting s→ u+ and t→ v−, (3.6) simplifies to

d(v − u)H ′uH
′
v = (H ′u +H ′v)(Hv −Hu) + d(v − u)H ′uH

′
v.

Therefore,

Hv −Hu =
2H ′uH

′
v

H ′u +H ′v
(v − u). (3.7)

According to Lemma 1, equation (3.7) has the two solutions given by
(1.7) with α = 1 or α = 1/2. In the case k = 1 and r ≥ 2, the proof is
similar and is omitted here. If k = r = 1, then (1.9) simplifies to

d+ 2
d

E [Rn −Rm|Rm+1 = u,Rn−1 = v] = v − u.

Repeating the arguments for the case k ≥ 2 above, it is not difficult to obtain
equation (3.7). The sufficiency is proved.

Necessity. We need to show that both cdf’s F1(x) = 1 − exp{−cx}
and F2(x) = 1 − exp{−cx1/2} satisfy (1.9). In case of F1(x), it is not
difficult to obtain the relation (1.9) using Lemma 2 above. It remains to
prove that F2(x) = 1−exp{−cx1/2} satisfies (1.9) as well. First assume that
2 ≤ k ≤ m−1 and r ≥ 2. Since x = H2(x)/c2, for the left-hand side of (1.9)
we have
d+ 2
v − u

E [Rn −Rm | Rm−k = u,Rn+r = v]

=
(d+ 2)!

c2W d+1
u,v (v − u)

∫ Hv

Hu

[
W d−r+1
u,x W r−1

x,v

(d− r + 1)!(r − 1)!
−

W k−1
u,x W

d−k+1
x,v

(d− k + 1)!(k − 1)!

]
H2
xdHx.

Using Lemma 3 (twice) with a = Hu, b = Hv, after some algebra, we obtain

d+ 2
v − u

E [Rn −Rm | Rm−k = u,Rn+r = v] = 2(n−m). (3.8)

Similarly, using Lemma 3 with a = Hs and b = Ht for the right-hand side of
(1.9) we have

d

t− s
E [Rn −Rm | Rm−k+1 = s,Rn+r−1 = t] = 2(n−m). (3.9)
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It follows from (3.8) and (3.9) that F2(x) satisfies (1.9). When k = 1 and
r ≥ 2 or k = r = 1 the proof is similar and is omitted here.

4 Proof of Theorem 3

Sufficiency. We shall prove that (1.11) implies (1.1). First, assume that
2 ≤ k ≤ m− 1 and r ≥ 2. Referring to (2.1) we obtain

E [kRn − (n−m+ k)Rm | Rm−k = u,Rn+r = v]

=
(d+ 1)!
W d+1
u,v

∫ v

u

[
kW d−r+1

u,x W r−1
x,v

(d− r + 1)!(r − 1)!
−

(d− r + 2)W k−1
u,x W

d−k+1
x,v

(k − 1)!(d− k + 1)!

]
xdHx

=
(d+ 1)!
W d+1
u,v

J(u, v; k, r), say,

and

E [kRn − (n−m+ k)Rm | Rm−k+1 = s,Rn+r−1 = t]

=
(d− 1)!
W d−1
s,t

∫ t

s

[
kW d−r

s,x W r−2
x,t

(d− r)!(r − 2)!
−

(d− r + 2)W k−2
s,x W d−k

x,t

(k − 2)!(d− k)!

]
xdHx

=
(d− 1)!
W d−1
s,t

J(s, t; k − 1, r − 1), say.

Now, we can write (1.11) as

(d+ 1)!J(u, v; k, r)
(d− 1)!J(s, t; k − 1, r − 1)

((d+ 1)s− t)W d−1
s,t = duW d−1

u,v . (4.1)

Differentiating both sides of (4.1) with respect to u and v and letting s→ u+

and t→ v−, after some algebra, we obtain

H ′u
Hv −Hu

=
1

v − u
. (4.2)

Equation (4.2) has the only solution given by (1.1). If k = 1 and r ≥ 2 the
proof is similar and is omitted here. If k = r = 1, then (1.11) simplifies to

E [Rn − (d+ 1)Rm|Rm−1 = u,Rn+1 = v] = −du.

Repeating the arguments for the case k ≥ 2 above, it is not difficult to obtain
equation (4.2) with only solution (1.1). The sufficiency is proved.

Necessity. Using Lemma 2, one can verify that the distribution function
F (x) = 1− exp{−c(x− lF )} satisfies (1.11). The theorem is proved.
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