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 Abstract

 The number Yn of offspring of the most prolific individual in the nth generation of

 a Bienaym6-Galton-Watson process is studied. The asymptotic behaviour of Yn as
 n -- o0 may be viewed as an extreme value problem for i.i.d. random variables with

 random sample size. Limit theorems for both Yn and E Yn provided that the offspring
 mean is finite are obtained using some convergence results for branching processes
 as well as a transfer limit lemma for maxima. Subcritical, critical and supercritical
 branching processes are considered separately.

 Keywords: Bienaym6-Galton-Watson branching process; max-stability; max-semi-
 stability; random sample size; transfer theorems

 AMS 1991 Subject Classification: Primary 60J80
 Secondary 60G70; 60F05

 1. Introduction

 Let { Zn } be a Bienaym6-Galton-Watson (BGW) branching process defined by

 Zn-1

 Zn = Xi(n), n = 1, 2 ... Zo =- 1,
 i=1

 where {Xi(n)}, i, n = 1, 2, ... are independent and identically distributed (i.i.d.) random
 variables, taking on non-negative integer values.

 The process { Zn } can be thought of as stochastic model of an evolving population of
 particles or individuals. One of the main objects of investigation in the theory of branching

 processes is the size Zn of the nth generation. However, there are many other characteristics
 describing the tree structure of the population process, which are studied as well. The number
 of individuals in a generation having a non-empty offspring set in a certain number of gen-
 erations (so-called reduced branching process) and the number of individuals' pairs having
 the same number of offspring, are two examples of such random variables (see [13], Chapter
 IV). In the present work our attention is focused on a new random variable concerning the
 population: the maximum number of offspring of a particle living in the nth generation.

 Denote by f(s) = EsXi (n) the offspring generating function and by fn (s) its nth functional
 iterate, i.e. fn(s) = f(fn-l(s)), n = 1, ..., fo(s) = s, O < s < 1. Additionally, let
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 Maximum family size in branching processes 633

 F(x) = P(Xi(n) < x) be the distribution function of the 'offspring variable' which has mean
 0 < m < 00 and variance 0 < r2 < o00. Define

 Yn = max{Xl (n), X2(n) ..., Xz,_ (n)}

 or equivalently

 00

 P(Yn < x) = P(Zn-1i = k)Fk(x) = fn-1(F(x)). (1.1)
 k=0

 The study of the sequence {Yn } might be motivated in different ways. A natural interpreta-
 tion within a demographic framework, for example, may be given. Indeed, the random variable
 in question is the number of children in the largest family. Thus, the asymptotic behaviour of

 Yn provides information about the influence of the largest families on the size of the whole
 population.

 Alternatively, certain kinds of extremes in branching processes have been considered (see

 e.g. [5, 11] and references therein), and investigating Yn is perhaps plausible as a contribution
 to this program. Similar questions are also considered in [10] (e.g. the application concerning
 'hero mothers'). Note here [1], where the maximum of a random number of i.i.d. random

 variables is considered when the number of variables forms a supercritical BGW branching
 process.

 We proceed with a transfer limit lemma for maxima with random sample size in Section

 2. In Section 3, the asymptotic behaviour of Yn is studied in the critical and non-critical
 cases, separately. Limit theorems for EYn are established in Section 4. A particular case of
 Lemma 2.1 as well as some of the results given here under stronger conditions are presented
 in [14].

 2. A simple transfer limit lemma

 Recall that a non-degenerate distribution function H(s) is max-stable if and only if for a
 distribution function F(x) there exist functions a(n) > 0 and b(n) such that

 lim Fn(a(n)x + b(n)) = H(x), (2.1)
 fn-- 00

 weakly. If (2.1) holds, then F(x) is said to belong to the domain of attraction of H(x), i.e.
 F E D(H). According to the classical Gnedenko result, H(x) = exp{-h(x)}, say, is of the
 type of one of the following three classes:

 h(x)= (-x)a for x E (-oo, 0), =1 x E [0, o00),
 h(x) = x-a for x E (0, oo), = 0 x E (-oo, 0],

 h(x) = e-x for x E (-oo, o00),

 where a > 0. Necessary and sufficient conditions for F E D(H) are well known. In particular,

 F E D(exp{-x-a}), a > 0 if and only if for x > 0,

 1 - F(x) = x-aL(x), (2.2)

 where L(x) is a slowly varying function at infinity (s.v.f.) (see e.g. [15], Proposition 1.11).
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 634 I. RAHIMOV AND G. P. YANEV

 Consider the following two sequences of random variables:

 (a) { i (n) }: independent for any n, with a common distribution function F(x);

 (b) {v(n)}: non-negative integer-valued and independent of r7i(n) for any n.
 Let r : -f - R be a function such that r(n) tends to infinity with n.
 We shall prove here a transfer limit result for a maximum with random sample size (see

 also [6], Theorem 6.2.2 and [7]).

 Lemma 2.1. Assume that (2.1) holds and that there exists a random variable v with qo(u) =
 Eexp{-uv}, u > 0 such that

 lirm P Bn =P(v<x) (2.3) n-oo r (n)
 ---(

 weakly, where Bn are some events, such that {v(n) > O} c Bn for every n. Then for x e R,

 lim ( maxl<i<v(n) 7i(n) - b(r(n)) _ lim P < x Bn = o(h(x)),

 n-- 00 a(r(n))
 where a(.) and b(.) are defined by (2.1).

 Proof First, note that {v(n) > 0} c Bn is equivalent to {v(n) = k} c Bn for every

 k = 1, 2, ... Now, since (2.1) implies limn-, Fr(n)(a(r(n))x + b(r(n))) = H(x), we obtain

 P ivmax Di(n) a (r(n))x + b(r(n)) | Bn

 o? ( ~max _ < LiP( nkn) = Pa(vx(n)=k Bn)P max Di (n) a (r(n))x+ ?b(r(n)) I v(n)= =)
 k=0

 = v (n) k Bn Fr(n)k/r(n) (a(r(n))x + b(r(n))) r n~(n) r (n)k
 k=O

 -- HY(x)dP(v < y), as n -- c.

 Note that there are no restrictions on the dependence of the events Bn and { ri(k),k =

 1, 2, ... } in the conditions of the lemma. In what follows we use Lemma 2.1 with 7i(n) =
 Xi(n), v(n) = Zn-1, and Bn = {Zn-1 > 0} or Bn = {Zn-1 > 0}.

 3. Limit theorems for Y,,

 3.1. Critical process (m = 1)

 Let the offspring generating function satisfy

 f(s) = s + (1 - s)l+aC(1/(1 - s)) (3.1)

 for 0 < a _ 1, where 0 < s < 1 and ?(x) is a s.v.f. It was proved by Slack (see e.g. [3], Theorem 8.12.3) that (3.1) is a necessary and sufficient condition for

 lim P(QnZn > y I Zn > 0) = P(Z > y), yv > 0, (3.2) l-* 00
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 Maximum family size in branching processes 635

 where Qn, = P(Zn > 0) and Z has Laplace transform

 qp(u) = Ee-uz = 1 - (1 + u-)-1/a u > 0. (3.3)
 Moreover, if (3.1) is fulfilled then

 Qn = n-1/aM(n), (3.4)

 where M(n) is a s.v.f. and limxoo Ma(x)J2(xl/a/M(x)) = 1/a.

 Remark 3.1. The case a = 1 is particularly important; here p(u) = 1/(1 + u), so the limit
 law is exponential. If Q2 < oo, then (3.1) holds for a = 1 and ?(x) is asymptotically constant.
 If 0 < a < 1, then (3.1) is equivalent to (2.2) for a = 1 + a and L(x) ~- aJ2(x)/ F(1 - a)
 as x - oc (see [2], Thm A). Note that (3.1) does not necessarily imply (2.2) in the borderline
 case a = 1.

 Recall that the de Bruijn conjugate of a s.v.f. L(x) is a s.v.f. L#(x), unique up to asymptotic
 equivalence, with

 lim L(x)L#(xL(x)) = 1, lim L#(x)L(xL#(x)) = 1.
 x- oo x- oo

 Theorem 3.1. Assume that m = 1.

 (a) Let o2 < 00 and suppose that (2.1) holds. Then for any x E IR,

 lim P Y - b(n) < x Zn >0 = + h(x) . (3.5) n- oo a (n) 2

 (b) Let o2 = o00 and suppose that (3.1) holds.

 (i) IfO < a < 1, then forx >0,

 lim P 1/(1 /(l+) < x Zn-1 > 0 = 1 - (1 + xa(l+a))-1/a
 n-- oo Qn +a)(L1 (Qn 1/(l) 1/(1+a)

 where the s.v.f L1 (x) is the de Bruijn conjugate of 1 /L(x).
 (ii) If a = 1 and (2.1) holds, then for any x E I,

 lim P (Yn - b(n/M(n)) < x Zn-1 >0) = 1- (+h-a (x))-1/a, (3.6) no oo a (n /M(n))

 where M(n) is a s.v.f defined by (3.4).

 Proof (a) It is well known (see e.g. [9], Theorem 2.4.2) that for x > 0,

 lim P Zn-1 < x Zn-1 > 0= P(Z < x),
 n--oo ( n

 where Eexp{-uZ} = 1/(1 + a2u/2). Now, (3.5) follows by Lemma 2.1.
 (b) Since (2.1) and (3.2) hold, we have by Lemma 2.1

 lmp( Yn - b(Qn1) lim P (, < x = 7p(h(x)), (3.7)
 n-w oo ah(Q1)i

 where 0(x) is given in (3.3).
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 636 I. RAHIMOV AND G. P. YANEV

 (i) Define the generalized (left continuous) inverse of a non-decreasing function U by

 U (y) = inf{x e R : U(x) > y). Since 0 < a < 1 then (3.1) is equivalent to (2.2)
 with a = 1 + a (see Remark 3.1). Thus, F e D(exp{-x-(l+a)}), x > 0 and one can choose

 in (3.7) (see e.g. [15], Proposition 1.11) b(Qn') = 0 and

 a(Q') ( Q) - Q /(+) (LI(Q1/(1+a)))1/(l+a) (3.8) ((n) 1F (n
 where, according to Proposition 1.5.15 in [3], Li (x) is the de Bruijn conjugate of 1/L(x). This
 completes the proof of (i).

 (ii) The claim in this case follows from (3.7) by a straightforward argument.

 To illustrate what the normalizing constants in Theorem 3.2 could be, let us consider two
 examples in which they can be calculated explicitly. In the first one, the offspring generating
 function satisfies (3.1) with ?(x) = logx; in the second, it is required that the offspring
 distribution function has a regularly varying tail, instead.

 Example 3.1. (a) Assume that f(s) = s + (1 - s)1+a log(1/(1 - s)) with 0 < a < 1. That
 is ?(x) ~ logx, and then (see Remark 3.1) L(x) ~ a logx/ F(1 - a). Therefore, (see [3],
 Corollary 2.3.4), Ll(x) ~ L(x). On the other hand, from [4], p. 309, 1/Qn - (n logn)1/a.
 Finally, by Theorem 3.1(b)(i), we obtain for x > 0,

 lim P n 1/((x+))(log Zn-1 > 0 -- 1 - (1 + x(l+O))-1/, n-moo P nl/(a(1+a))jogn)1/(1+a)

 where c = (F(1 - a)(1 + a))-1/(1+a).
 (b) Let a = 1 and 1 - F(x) x-2 logx. In this case (3.6) holds with b(n/M(n)) - 0,
 a(n/M(n)) = Q /(LI(Q 1/2))1/2 and h(x) = x-2. By Proposition A(ii) in [2] it follows a(n/M(n)) = -12ad =in i olw

 that ?(x) f fl(logu)/udu = (logx)2/2. Since limx-o M(x)JC(x/M(x)) = 1, we have
 1/M(n) ~ (log n)2/2. Now, from (3.4), 1/Qn ~ n(logn)2/2 and, since Ll(n) ~ logn (see
 e.g. [3], Corollary 2.3.4), we obtain for x > 0,

 lim P Yn <x Zn-1 >0= 1 -(1 +4x2-1 n--oo nl/2(logn)3/2 -
 Instead of using Lemma 2.1, one can directly prove the following result.

 Theorem 3.2. Assume that m = 1, (3.1) holds, and

 S P(XI(1) > n)
 lim = 1. (3.9)
 n--o0 P(Xi(1) > n + 1)

 Then for x > 0,

 lim P (QnU(Yn) < x IZn-1 > 0) = 1 - (1 + xa)-1/a, (3.10) n-+ o0

 where Qn, satisfies (3.4) and U(x) = 1/(1 - F(x)).

 Proof Since limn> Qn = 0 we have (cf. [12], p. 24) that (3.9) is a necessary and sufficient
 condition for the existence of a sequence {un }, such that for x > 0,

 1 - F(un)
 lim =x. (3.11)
 n-- o an
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 Maximum family size in branching processes 637

 On the other hand, (3.1) holds if and only if

 lim (1 - fn(exp{-uQn}))/an = 1 - (p(u), u > 0, n- oo

 where (p(x) is defined by (3.3). Since limno(1 - F(un)) = O, we get as n -- o,
 1 - fn-1(F(un)) 1 - fn-1 (exp{ln F(un)})

 P(Yn > un I Zn-1 > 0)=
 On-1 an-1

 1 - fn-1 (exp{-(1 - F(un))(1 + o(1))})
 Qn-1

 1 - fn-1 (exp{-x Qn-1 (1 + o(1))})
 Qn-1

 - 1 - o(x). (3.12)
 Further, from (3.11), using Lemma 2.2.1 in [6], one can obtain for x > 0,

 1( - F(Yn) lim P < x lZn-1 > 0 n- oo Qn-1

 lim p(1 - F(Yn) 1 - F(un) 1 - F(un) ) -limP + x - --- Zn >0 neoo Q2n-1 2n-1 en-1

 = lim P(Yn > un, I Zn-1 > 0). n---oo

 From this, taking into account (3.12) and (3.3), we obtain (3.10).

 Remark 3.2. It is known (cf. [6], Corollary 2.4.1) that if (3.9) does not hold then there are no

 functions a(n) > 0 and b(n) such that (Yn - b(n))/a(n) converges in distribution to a non-
 degenerate limit. Therefore, (3.9) is a necessary condition for Theorem 3.1 to hold. One can
 verify that (3.9) is not true for geometric and Poisson distributions. On the other hand, some
 classes of offspring distributions which satisfy the conditions of Theorem 3.1 are provided

 by Theorems 3.48 and 3.50 in [16]. Define F[x](x) = P([X] < x), where [a] stands for
 the greatest integer less than or equal to a. According to the theorems mentioned in [16], if
 the distribution function Fx of a random variable X belongs to the domain of attraction of

 H(x) = exp{-x-a}, x > 0, a > 0, then so does Fix]. Further, Fx e D(exp{-exp{-x}}),
 x E IR iff F[x] e D(exp{- exp{-x}}), x e IR, provided that sup{x : Fx (x) < 1} = co.

 3.2. Non-critical processes (m # 1)

 It is known (see e.g. [3], Theorem 8.12.5) that if 1 < m < 00, then there exists a sequence

 of constants {CCn }, limn ~ Cn = ~o such that {Zn / Cn } converges almost surely to a non-
 degenerate limit W. The Laplace transform Vr(u) = Eexp{-uW}, u > 0 of the limiting
 random variable is the unique (up to a scale factor) solution of the functional equation

 # (u) = f # ((- .(3.13)

 The constants Cn take on the form Cn = mn/L2(mn), where (see [3], Theorem 8.12.6)
 L2(x) = fo P(W > y) dy is a s.v.f.

 Instead of (2.1), let us assume that the following weaker condition holds. For a distribution
 function F(x) there exist two functions a(k) > 0 and b(k) such that

 lim Fk(i(k)x + b(k)) = G(x) = exp{-g(x)}, say, (3.14) k--oo
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 638 I. RAHIMOV AND G. P. YANEV

 weakly, where k runs over a sequence of positive integers k(1) < k(2) < ... subject to the
 condition

 k(n + 1)
 lim = r, 1 < r < co. (3.15)
 n-- o k(n)

 This assumption leads to the following extension of the class of max-stable distributions. A
 non-degenerate distribution function G(s) is max-semistable (under linear transformation) if
 and only if (3.14) holds for a distribution function F(x); F(x) is said to belong to the domain of
 attraction of G(x), in our notation, F e SD(G). The case r = 1 in (3.15) corresponds to max-
 stable laws. It was proved by Grinevich that convergence (3.14) implies that G(x) belongs to
 one of three types corresponding to the three max-stable laws. The explicit expression for g (x)
 in (3.14) as well as necessary and sufficient conditions for F e SD(G) were established in [8].

 In the subcritical case when 0 < m < 1, it is known (see e.g. [9], Theorem 2.6.2) that

 lim P(Zn = j I Zn > O) pj, j =0, 1 .... (3.16)
 n-+oo

 where {pj} is a probability distribution whose generating function y (s) = L=o Pis js Is s<
 1, is the unique generation-function solution of the functional equation

 y(f(s)) = my(s) + 1 - m, y(0) = 0, (3.17)

 where f(s) is the offspring generating function.
 Now, we are in a position to prove the following result.

 Theorem 3.3. (a) Assume that 1 < m < oc.

 (i) If (2.1) holds, then for x e IR,

 lim P (Yn-b(Cn) <x = r(h(x)). (3.18)
 nfool a(Cn)

 (ii) Assume (3.14) with k = [Cn] and normalizing constants a(Cn ) and b(Cn ). Then (3.18)
 still holds with h(x) - g (x).

 (b) IfO < m < 1, then for x > 0,

 lim P(Yn < x Zn-,1 > 0) = y(F(x)),
 - oo00

 where y is the unique solution of (3.17) among the probability generating functions.

 Proof (a)(i) Since {Zn, / Cn,} converges almost surely, and hence in distribution, to W the
 assertion follows by Lemma 2.1.

 (ii) Since

 lim F[Cn](a(Cn)x + b(Cn)) = G(x), - oo00

 it is not difficult to see that

 ? Z-Cn cnk )Fcnk/cn(a(Cn)x +b(Cn))
 P(Yn a(Cn)x + b(Cn))= P = FCk/Cn((Cn)x +b(C))

 k=0

 SGy (x) dP(v < y),

 as n --co, which completes the proof of part (a).
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 Maximum family size in branching processes 639

 (b) Using (1.1) and (3.16) we obtain as n c- o,

 1 - fn-1 (F(x)) fn-1 (F(x)) - fn-1 (0)
 P(Yn > x I Zn-_1 > 0) = = 1 - 1 - fn-1 (0) 1 - fn-1 (0)

 = 1 - E(FZ"-1(x) I Zn,_1 > 0)

 -- 1 - y'(F(x)).

 Example 3.2. Let us consider the case when the offspring distribution is geometric, i.e.
 f(s) = p/(l - qs), where 1/2 < p = 1 - q < 1. Then m = q/p < 1 and it is not
 difficult to see that the solution of (3.17) is y (s) = (1 - m)s/(1 - ms). Hence

 (p - q)(1 - qk+l)
 lim P(Yn < k I Zn-1 > 0) = n oo p - q(1 - qk+1)

 4. Convergence of EYn

 Let {Vn,} be a sequence of non-negative random variables. Using an argument from [15],
 p. 77, it is not difficult to prove the following technical lemma.

 Lemma 4.1. Assume that there exists a random variable V with EV < oo, such that

 lim P(Vn < x I Bn) = P(V < x), n--* 00oo

 weakly, for a sequence of events {Bn }. Iffor any N > 0

 00

 lim limsup ] P(Vn, > jBn)= 0, (4.1)
 N--oo n- oo j=N+1 j=N+ I

 then

 lim E(Vn I Bn)= E(V). (4.2)
 n--0 oo

 In the subcritical case the following theorem holds.

 Theorem 4.1. If 0 < m < 1 and EXI(1)log(1 + XI1(1)) < oo, then
 OO

 lim E(Yn I Zn-,1 > 0) = L(1 - y(F(k)) < cX), nl-*00
 k=0

 where y is the unique solution of(3.17) among the probability generating functions.

 Proof Since y'(1) < o0 if and only if EX1 (1)log(1 + X1 (1)) < co (cf. [9], Theorem
 2.6.2), we have by Theorem 3.3(b)

 00

 EY = (1 - y(F(k)) < my'(1) <oo, (4.3) k=0
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 640 I. RAHIMOV AND G. P. YANEV

 where P(Y < x) = limn-oo P(Yn < x Zn-1 > 0), weakly. Further, for j = 0, 1 ...
 00

 P(Yn > j Zn-1 > O) = Z P(Zn-1 = k | Zn-1 > 0)P(max Xi(n) > j) (4.4)
 k=1

 00

 = P(Zn-1 = k I Zn-1 > 0)(1 - Fk(j))
 k=l 1

 00

 L P(Zn-1 = k I Zn-1 > 0)k(1 -F(j)) k= 1

 = (1 - F(j))E(Zn-1 I Zn-1 > 0).

 Therefore, since limn-~oo E(Zn-1 | Zn-1 > 0) = y'(1) < c0 (cf. [9], Theorem 2.6.1),

 lim limsup P(Yn > j IZn-1 > 0) = lim y'(1) 3 (1 - F(j)) = 0. (4.5)
 N-~ o n-- ?o N-+ 00 j=N+I j=-N+I

 The claim of the theorem follows from (4.3) and (4.5), appealing to Lemma 4.1.

 Notice that, as could be expected, under the conditions of Theorem 4.1, we obtain

 lim E(Yn I Zn-1 > 0) < m lim E(Zn I Zn-I > 0). n->00 o1-> 00

 Example 4.1. Let us come back to Example 3.2, where the offspring distribution is geometric.
 Then, by Theorem 4.1,

 0 k+1 ko (4.6) lim E(Yn [ Zn-1 > 0) = mqk+ + 11m(-- n--oo -mq+ m 1-m q((4)+ c k=O k=0

 where c = m/(1 - m). Denote by Sn the partial sum of S = Ck=0 1/(q-(k+l) + c). Then Sn < -=o qk+1 and S <i m. Further,
 n n

 Sn<1 -1 ?1:ISn-
 Sn < -(k+1) q -(k+2) q Sn -1 + ? k=0Lqici + qc k= q-+-cq-1 _+_ + -n2 + k=O k=0

 Hence S > m(1 - m)/(1 - pm). Finally,

 m m

 < lim E(Yn I Zn-1 > 0) < 1 - pm n-oo 1 - m

 Further on we assume that (2.2) holds, i.e. F e D(exp{-x-a }), x > 0. Let us consider the
 critical process.

 Theorem 4.2. Assume that m = 1 and (2.2) holds with a > 1.
 (i) Ifa2 = o0, then

 1 1 11 1

 lim E (Yn Zn-1 > 0)= - B , , (4.7)
 n-/oo nt/(a(a-1))L2(n) a(a- 1)
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 Maximum family size in branching processes 641

 where B(u, v) is the beta function and La(n)M(n) Ll(nl/a(a-1)/Ml1/a(n)), n -- o0 is a s.v.f, where Ll(x) is the de Bruijn conjugate of 1/L(x) and M(n) is defined by (3.4).
 (ii) If a2 < 00, then

 1 2

 nlim 1 Zn-1 > 0) = 2 sin( r/a)
 n-0 nl/a(Ll(nl/a))l/aE Zsn

 where the s.v.f Ll (x) is the de Bruijn conjugate of 1/L(x).

 Proof (i) Since (2.2) holds, we have F E D(exp{-x-a }), x > 0 and by (3.7)

 lim P(Yn < a(Qnl)x I Zn-1 > 0) = 1 - (1 + xa(a-1))-1/(a-1), (4.8)

 where a(Qn1) = (1/(1 - F)) (Qnl). The right-hand side in (4.7) is equal to the expectation of the limiting distribution in (4.8).
 On the other hand, by (4.4) we obtain

 P(Yn > ja(Qn, ) I Zn-1 > 0) < (1 - F(ja(Q1l)))E(Zn-1 I Zn-1 > 0) (4.9)
 (1 - F(ja(Qn1)))(1 - F(a(Qnl)

 (1 - F(a(Qnl)))Qn-1
 By the properties of regularly varying functions (see e.g. [15], Proposition 0.8(ii)), for a

 given 8 > 0 and large n

 1 - F(ja(Qnl')) 8)
 < (1 + s)j-a+e. (4.10)

 1 - F(a(Qn71))
 In addition, by Theorem 1.5.12 in [3],

 1 - F(a(Q-1)) lim sup = 1. (4.11)
 n \o On

 By (4.9)-(4.11) we obtain

 lim lim sup L Y j Zn-1 >0 - lim = 0. (4.12)
 N--0 n-- jj=N+1 -) j=N+1 ja-

 Now, by (4.8) and (4.12), applying Lemma 4.1 and using (3.8), one can obtain (4.7).
 (ii) The proof is similar to those in (i), using (3.5) instead of (3.7).

 It is worth noting that Theorem 4.2 and (3.4) (with a = a - 1) imply

 E(Yn I Zn-1 > 0) ~ n-(1-1/a)L3(n)E(Zn I Zn-1 > 0) for a2 < cc,

 E(Yn I Zn-1 > 0) n-l1/aL4(n)E(Zn I Zn-1 > 0) for -2 = 0.
 where a > 1 and L3(n) and L4(n) are certain s.v.f.s.

 Example 4.2. As a continuation of Example 3.1 b, from (4.7) with a = 2 we obtain

 1 It

 lim E (Yn I Zn-1 > 0) = -
 n--o nl/2(log n)3/2 4
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 In the supercritical case we shall prove the following result.

 Theorem 4.3. Assume that m > 1 and EXl(1) log(1 + X1(1)) < cx. If(2.2) holds, then

 EYnfo lim (1 - (x-a)) dx, (4.13) n-'o mn/a (Li (mn/a))l /a1E(a)

 where the s.v.f Ll(x) is the de Bruijn conjugate of 1/L(x) and 4r(x) is the unique (up to a
 scale factor) Laplace transform solution of the functional equation (3.13).

 Proof Since F E D(exp{-x-a}), a > 0 and EXl(1)log(1 + X1(1)) < 00, we have by
 (3.18)

 1 - ~ (x -a) lim P(Yn > a(mn)x I Zn-1 > 0) = n-+0 1 - q

 where a(mn) = (1/(1 - F)) (mn) and q is the extinction probability. Note that

 (1 - f(x-a)) dx < 0 iff EX (1)log(1 + XI (1)) < 00

 (see e.g. [9], Theorem 2.7.2).
 Further, by (4.4) we obtain

 P(Yn > ja(mn) I Zn-1 > 0) < (1 - F(ja(mn)))E(Zn-1 I Zn-1 > 0) (4.14)
 (1 - F(ja(mn))) (1 - F(a(mn)))mn

 (1 - F(a(mn)))On-l

 By Theorem 1.5.12 in [3], we obtain

 limsupmn(1 - F(a(mn))) = 1.
 n--- oo

 Therefore, by (4.14), appealing to (4.10) with Qn1 = mn, we have for 8 > 0,

 lim limsup P > j Zn-1 >0 = lim = + 0. N-+a(mn) Na- N-*0f-+ 00n-o =+ j=N+1 j=N+1 j=(N+1

 Applying Lemma 4.1, we obtain

 limE Yn Z > 1 (1- 4(xa

 ln--E0 a(mn) 1 - q Jo
 Now, one can complete the proof, using (3.8) with Qn' = mn and 1 - a = a, and the equality EYn = E(Yn I Zn-1 > O)P(Zn-1 > 0).

 Notice that, under the conditions of Theorem 4.3, we have

 EYn ~ m-n(1-l/a)Ls(n)EZn,

 where a > 1 and Ls(n) is a certain s.v.f.
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