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Abstract We characterize the exponential distribution as the only one which satis-
fies a regression condition. This condition involves the regression function of a fixed
record value given two other record values, one of them being previous and the other
next to the fixed record value, and none of them are adjacent. In particular, it turns
out that the underlying distribution is exponential if and only if given the first and last
record values, the expected value of the median in a sample of record values equals
the sample midrange.

Keywords Characterization · Exponential distribution · Record values ·
Median · Midrange

1 Introduction

In 2006, on a seminar at the University of South Florida, Moe Ahsanullah posed the
question about characterizations of probability distributions based on regression of a
fixed record value with two non-adjacent (at least two spacings away) record values
as covariates. We address this problem here.

To formulate and discuss our results we need to introduce some notation as follows.
Let X1, X2, . . . be independent copies of a random variable X with absolutely con-
tinuous distribution function F(x). An observation in a discrete time series is called
a (upper) record value if it exceeds all previous observations, i.e., X j is a (upper)
record value if X j > Xi for all i < j . If we define the sequence {Tn, n ≥ 1} of
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744 G. P. Yanev

record times by T1 = 1 and Tn = min{ j : X j > XTn−1 , j > Tn−1}, (n > 1), then the
corresponding record values are Rn = XTn , n = 1, 2, . . . (see Nevzorov 2001).

Let F(x) be the exponential distribution function

F(x) = 1 − e−c(x−lF ), (x ≥ lF > −∞), (1)

where c > 0 is an arbitrary constant. Let us mention that (1) with lF > 0 appears, for
example, in reliability studies where lF represents the guarantee time; that is, failure
cannot occur before lF units of time have elapsed (see Barlow and Proschan 1996,
p. 13).

We study characterizations of exponential distributions in terms of the regression
of one record value with two other record values as covariates, i.e., for 1 ≤ k ≤ n − 1
and r ≥ 1 we examine the regression function

E[ψ(Rn)|Rn−k = u, Rn+r = v], (v > u ≥ lF ),

where ψ is a function that satisfies certain regularity conditions. Let f u,v denote the
average value of an integrable function f (x) over the interval from x = u to x = v,
i.e.,

f u,v = 1

v − u

v∫

u

f (t)dt.

Yanev et al. (2008) prove, under some assumptions on the function g, that if F is
exponential then for 1 ≤ k ≤ n − 1 and r ≥ 1,

E

[
g(k+r−1)(Rn)

k + r − 1

∣∣∣Rn−k = u, Rn+r = v

]
=
(

k − 1 + r − 1
k − 1

)
∂k+r−2

∂ur−1∂vk−1

(
g′

u,v

)
,

(2)

where v > u ≥ lF and g′ is the derivative of g. Bairamov et al. (2005) study the
particular case of (2) when both covariates are adjacent (one spacing away) to Rn .
They prove, under some regularity conditions, that if k = r = 1, then (2) is also
sufficient for F to be exponential. That is, F is exponential if and only if

E
[
g′(Rn)

∣∣∣Rn−1 = u, Rn+1 = v
]

= g′
u,v, (v > u ≥ lF ).

Yanev et al. (2008) consider the case when only one of the two covariates is adjacent
to Rn and show that, under some regularity assumptions, F is exponential if and only
if (2) holds for 2 ≤ k ≤ n − 1 and r = 1, i.e.,

E

[
g(k)(Rn)

k

∣∣∣Rn−k = u, Rn+1 = v

]
= ∂k−1

∂vk−1

(
g′

u,v

)
, (v > u ≥ lF ).
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Characterization of exponential distribution 745

Here we address the case when both covariates are non-adjacent to Rn , which turns
to be more complex. Denote for x ≥ lF ,

H(x) = − ln(1 − F(x)) and h(x) = H ′(x),

i.e., H(x) is the cumulative hazard function of X and h(x) is its hazard (failure) rate
function. In this paper, under some additional assumptions on the hazard rate h(x) and
the function g(x), we extend the results in Bairamov et al. (2005) to the case when both
covariates are non-adjacent. Namely, we shall prove that for fixed 2 ≤ k ≤ n − 1 and
r ≥ 2, equation (2) is a necessary and sufficient condition for F(x) to be exponential.
Note that the characterization for the non-adjacent case given in Theorem 1B of Yanev
et al. (2008) involves, in addition to (2), one more regression condition. We shall show
here that (2) alone characterizes the exponential distribution. This result provides a
natural generalization of the known special cases mentioned above. As a consequence
of our main result, we obtain Corollary 1 below, which seems to be of independent
interest with respect to possible statistical applications. Let us also mention that the
technique of our proof is different from that used by Dembińska and Wesołowski
(2000) in deriving characterization results in terms of regression of a record value on
another non-adjacent one.

Further on, for a given continuous function g(x) and positive integers i and j , we
denote

M(u, v) = g′
u,v = g(v)− g(u)

v − u
, i M j (u, v) = ∂ i+ j

∂ui∂v j (M(u, v)) , (u �= v), (3)

as well as i M(u, v) and M j (u, v) for the i th and j th partial derivative of M(u, v)with
respect to u and v, respectively.

Theorem Let n, k, and r be integers, such that 2 ≤ k ≤ n − 1 and r ≥ 2. Assume
that F(x) satisfies the following conditions.

(i) The nth derivative F (n)(x) where n = max{k, r} is continuous in (lF ,∞);
(ii) h(x) is nowhere constant in a small interval (lF , lF + ε) for ε > 0;

(iii) h(lF+) > 0 and
∣∣h(n)(lF+)∣∣ < ∞ for n ≤ max(2, r − 1).

Suppose the function g(x) satisfies
(iv) g(x) is continuous in (lF ,∞) and g(k+r−1)(x) is continuous in (lF ,∞);
(v) r−1 Mk(lF+, v) �= 0 for v > lF ;

(vi) if r = 2 then |g(k+2)(lF+)| < ∞, and if r ≥ 3 then |g(k+2r−1)(lF+)| < ∞.
Then (2) holds if and only if X has the exponential distribution (1) with c =
h(lF+).

Remark I conjecture that the assumption (vi) can be weakened to |g(k+r)(lF+)| < ∞
for any r ≥ 2, retaining the symmetry with respect to k and r from the case r = 2. One
can verify this in the case r = 3 by extending the approximation formula in Lemma 4.

We refer to Leemis (1995) for distributions, related to reliability and lifetime mod-
eling, whose hazard functions satisfy the assumptions (ii) and (iii). Also the two
corollaries below provide examples of functions g(x) which satisfy the assumptions
of the Theorem.
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746 G. P. Yanev

We continue with two interesting particular choices for g(x). First, setting

g(x) = xk+r

(k + r)! and thus
g(k+r−1)(x)

k + r − 1
= x

k + r − 1
,

one can see that the assumptions (iv)–(vi) of the Theorem are satisfied and

(
k + r − 2

k − 1

)
r−1 Mk−1(u, v) = 1

k + r − 1

ru + kv

k + r
.

Therefore, we obtain the following corollary.

Corollary 1 Let n, k, and r be integers, such that 2 ≤ k ≤ n − 1 and r ≥ 2. Suppose
assumptions (i)-(iii) of the Theorem hold. Then X has the exponential distribution (1)
with c = h(lF+) if and only if

E[Rn|Rn−k = u, Rn+r = v] = ru + kv

k + r
, (v > u ≥ lF ). (4)

Note that the right-hand side of (4) is a weighted average of the two covariate values
- each covariate being given weight proportional to the number of spacings Rn is away
from the other covariate. In particular, (4) with k = r becomes

E[Rn|Rn−k = u, Rn+k = v] = u + v

2
, (2 ≤ k ≤ n − 1).

This last equation allows the following interpretation. Suppose we observe 2n − 1
record values R1, . . . , R2n−1 where n ≥ 2. Then X is exponential if and only if, given
the first and last record values, the expected value of the median Rn in the sample
equals the sample midrange.

We continue with another choice of g(x) from (2). Let lF > 0 and

g(x) = (−1)k+r−1

(k + r − 1)!
1

x
and thus

g(k+r−1)(x)

k + r − 1
= 1

(k + r − 1)xk+r
.

It is not difficult to see that the assumptions (iv)-(vi) of the Theorem are satisfied and

(
k + r − 2

k − 1

)
r−1 Mk−1(u, v) = 1

(k + r − 1)urvk
.

Hence, the Theorem implies the following result.

Corollary 2 Let n, k, and r be integers, such that 2 ≤ k ≤ n − 1 and r ≥ 2. Suppose
assumptions (i)-(iii) of the Theorem hold. Then X has the exponential distribution (1)
with c = h(lF+) if and only if

E

[
1

Rk+r
n

∣∣∣Rn−k = u, Rn+r = v

]
= 1

urvk
, (v > u ≥ lF > 0). (5)
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Characterization of exponential distribution 747

Finally, let us mention that, following Bairamov et al. (2005), one can obtain an
extension of the Theorem that involves monotone transformations of X , see also
Yanev et al. (2008), Theorem 3. Consequently, the characterization examples given in
the above two papers can be modified for the case of non-adjacent covariates.

2 Preliminaries

In this section we present four technical lemmas, which we use in Section 3 to prove
the Theorem. First, we prove an identity that links the derivatives of g(x) with those
of M(u, v) = (g(v)− g(u))/(v− u). Denote (n)(m) = n(n − 1) . . . (n − m + 1)(m ≥
1); n(0) = 1.

Lemma 1 For any positive integer k and n ≥ 2 and for v > u

(n − 1)!g(k+n−1)(v) =
n∑

i=0

(
n
i

)
(k + n − 1)(n−i)(v − u)i n−1 Mk−1+i (u, v). (6)

Proof For simplicity write i M j for i M j (u, v). According to Lemma 1 in Yanev et al.
(2008), we have for i, j ≥ 1 and v > u

g( j)(v) = (v − u)M j + j M j−1, i i−1 M j = (v − u) i M j + j i M j−1. (7)

To prove (6) we use induction with respect to n. Referring to (7), we have

g(k+1)(v) = (v − u)Mk+1 + (k + 1)Mk

= (v − u)[(v − u) 1 Mk+1 + (k + 1) 1 Mk]
+(k + 1)[(v − u) 1 Mk + k 1 Mk−1]

= (k + 1)k 1 Mk−1 + 2(k + 1)(v − u) 1 Mk + (v − u)2 1 Mk+1,

which is (6) with n = 2. To complete the proof, assuming (6), we need to show that

n!g(k+n)(v) =
n+1∑
i=0

(
n + 1

i

)
(k + n)(n+1−i)(v − u)i n Mk−1+i . (8)

Differentiating both sides of (6) with respect to v and multiplying by n, we obtain

n!g(k+n)(v) =
n∑

i=0

(
n
i

)
(k + n − 1)(n−i)n

×
[
i(v − u)i−1

n−1 Mk+i−1 + (v − u)i n−1 Mk+i

]
. (9)

123
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Applying the second formula in (7) repeatedly, we have

n
[
i(v − u)i−1

n−1 Mk+i−1 + (v − u)i n−1 Mk+i

]

= i(v − u)i−1 [(v − u) n Mk+i−1 + (k + i − 1) n Mk+i−2
]

+(v − u)i
[
(v − u) n Mk+i + (k + i) n Mk+i−1

]
(10)

= (v − u)i+1
n Mk+i + (k + 2i)(v − u)i

×n Mk+i−1 + i(k + i − 1)(v − u)i−1
n Mk+i−2.

Therefore, by (9) and (10), we have

n!g(k+n)(v) =
n∑

i=0

(
n
i

)
(k + n − 1)(n−i)(v − u)i+1

n Mk+i

+
n∑

i=0

(
n
i

)
(k + n − 1)(n−i)(k + 2i)(v − u)i n Mk+i−1

+
n∑

i=0

(
n
i

)
(k + n − 1)(n−i)i(k + i − 1)(v − u)i−1

n Mk+i−2 (11)

= S1 + S2 + S3, say.

Changing the summation index to l = i + 1 we obtain

S1 =
n+1∑
l=0

(
n

l − 1

)
(k + n − 1)(n−l+1)(v − u)l n Mk+l−1 (12)

and setting l = i − 1, we have

S3 =
n−1∑
l=0

(
n

l + 1

)
(l + 1)(k + n − 1)(n−l−1)(k + l)(v − u)l n Mk+l−1, (13)

assuming

(
n
l

)
= 0 for l = −1 or l > n. Now, observing that

(
n

i − 1

)
(k + n − 1)(n−i+1) +

(
n
i

)
(k + n − 1)(n−i)(k + 2i)

+
(

n
i + 1

)
(k + n − 1)(n−i−1)(i + 1)(k + i)

= (k + n − 1)(n−i)

[(
n

i − 1

)
(k + i − 1)+

(
n
i

)
(k + 2i)+

(
n

i + 1

)
(i + 1)

]

=
(

n + 1
i

)
(k + n)(n−i+1), (14)

one can see that (11)–(14) imply (8) which completes the proof of the lemma. ��
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Characterization of exponential distribution 749

For simplicity, further on we denote, for integer i, j ≥ 0 and v ≥ lF ,

i M j (v) = i M j (lF+, v).

Lemma 2 If |g(i+ j+1)(lF+)| < ∞ for any non-negative integers i and j , then

lim
v→lF +

(
i + j

i

)
i M j (v) = g(i+ j+1)(lF+)

i + j + 1
. (15)

Also, if |g(i+ j+1−m)(lF+)| < ∞ for m = 1, 2, . . ., then

lim
v→lF +(v − lF )

m
i M j (v) = 0 (16)

Remark Note that for i = k − 1 and j = r − 1, (15) implies that the limit of the
right-hand side of (2) as v → lF+ equals g(k+r−1)(lF+)/(k + r − 1).

Proof We use induction with respect to the sum i + j . Clearly limv→łF + M(v) =
g′(lF+). Applying L’Hopital’s rule, we have

lim
v→lF + M1(v) = lim

v→lF +
g′(v)− M(v)

v − lF

= lim
v→lF + g′′(v)− lim

v→lF + M1(v).

Hence, limv→lF + M1(v) = g′′(lF+)/2. Similarly, limv→lF + 1 M(v) = g′′(lF+)/2.
This verifies (15) for i + j = 0 and i + j = 1. Assuming that (15) is true for
0 ≤ i + j ≤ n, we will prove it for i + j = n + 1. By the second equation in (7) and
L’Hopital’s rule (the numerator below approaches zero by the induction assumption)
we have

lim
v→lF + i M j (v) = lim

v→lF +
i i−1 M j (v)− j i M j−1(v)

v − lF

= lim
v→lF + i i−1 M j+1(v)− j lim

v→lF + i M j (v).

That is,

lim
v→lF + i M j (v) = i

j + 1
lim

v→lF + i−1 M j+1(v).

Iterating, we obtain

lim
v→lF + i M j (v) = i ! j !

(i + j)! lim
v→lF + M j+i (v). (17)
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750 G. P. Yanev

Now, by the first equation in (7) and L’Hopital’s rule (the numerator below approaches
zero by the induction assumption) we have

lim
v→lF + Mi+ j (v) = lim

v→lF +
g(i+ j)(v)− (i + j)Mi+ j−1(v)

v − lF

= lim
v→lF + g(i+ j+1)(v)− (i + j) lim

v→lF + Mi+ j (v)

and hence

lim
v→lF + Mi+ j (v) = 1

i + j + 1
g(i+ j+1)(lF+).

Substituting this into (17) we complete the proof of the induction step.
Let us now prove (16). Using induction and the second equation in (7), it is not

difficult to see that for m = 0, 1, . . .

(v − lF )
m

i M j (v) =
m∑

k=0

(
m
k

)
(−1)ki(m−k) j(k) i−m+k M j−k(v).

Passing to the limit as v → lF+ and applying (15) we find

lim
v→lF +(v − lF )

m
i M j (v) =

m∑
k=0

(
m
k

)
(−1)ki(m−k) j(k) lim

v→lF + i−m+k M j−k(v)

=
m∑

k=0

(
m
k

)
(−1)ki(m−k) j(k)

× (i − m + k)!( j − k)!
(i + j + 1 − m)! g(i+ j+1−m)(lF+)

= i ! j !
(i + j + 1 − m)!g(i+ j+1−m)(lF+)

m∑
k=0

(
m
k

)
(−1)k

= 0.

The proof of the lemma is complete. ��
The next lemma establishes some identities and limit results involving

w(v) = h(v)

H(v)
(v − lF ), (v > lF ). (18)

Lemma 3 For v > lF ,

h′(v)
h(v)

(v − lF ) = w′(v)
w(v)

(v − lF )+ w(v)− 1. (19)
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Characterization of exponential distribution 751

If F ′′(v) is continuous in (lF ,∞), h(lF+) > 0, and h′(lF+) �= 0, then

lim
v→lF +w(v) = 1, lim

v→lF +
(v − lF )w

′(v)
w(v)− 1

= 1, (20)

and

lim
v→lF +

(v − lF )
2

w(v)− 1
= 0. (21)

Proof Differentiating (18) with respect to v, it is not difficult to obtain (19).
Applying L’Hopital’s rule, we obtain that as v → lF+

w′(v) = [H(v)h′(v)− h2(v)](v − lF )+ H(v)h(v)

H2(v)

∼ [H(v)h′′(v)− h(v)h′(v)](v − lF )+ 2H(v)h′(v)
2H(v)h(v)

(22)

→ h′(lF+)
2h(lF+) �= 0.

Now, the continuity of w(v) implies that w(lF+) = 1. It follows by the mean-value
theorem and (22) that

lim
v→lF +

(v − lF )w
′(v)

w(v)− 1
= lim
v→lF +

w′(v)
w′(η)

= 1, (lF < η < v),

i.e., the second limiting result in (20). Finally, applying L’Hopital’s rule, it is not
difficult to obtain (21). The proof of the lemma is complete. ��

For positive integers n, r , and k, define the sequence {dn(v)}∞n=1 for v > lF by the
recurrence

d1(v) = d

dv
{ r−1 Mk−1(v)H

n+k−1(v)} and dn+1(v) = d

dv

{
dn(v)

h(v)

}
. (23)

In the lemma below, we derive an expansion of dn(v) in terms of r−1 M j (v) and H j (v)

for k − 1 ≤ j ≤ n + k − 1. Note that if k > i , then

(
i
k

)
= 0 and

i∑
j=k
(·) = 0.
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752 G. P. Yanev

Lemma 4 The following identity is true for n = 1, 2, . . .

dn(v) =
2∑

j=0

(
n
j

)
(k + n − 1)(n− j) r−1 Mk−1+ j (v)

Hk−1+ j (v)

h j−1(v)

−
(

n
2

)
(k + n − 1)(n−2) r−1 Mk(v)

(h′(v))k+1

h2(v)
+

n∑
j=3

c j (v)H
k−1+ j (v),

(24)

provided that the left and right-hand sides are well-defined.
If h(lF+) �= 0, |h(n−1)(lF+)| < ∞ and |g(k+r+n−1)(lF+)| < ∞ for n = 3, 4, . . .,

then

lim sup
v→lF +

∣∣∣∣∣∣
n∑

j=3

c j (v)H
k−1+ j (v)

∣∣∣∣∣∣ < ∞. (25)

Proof Using induction, one can prove that for n = 1, 2, . . .

dn(v) = − h′(v)
h2(v)

dn−1(v)+ 1

h(v)
d ′

n−1(v) (26)

=
n∑

j=1

c j,n(v)
dn− j

dvn− j
d1(v)

and c j,n(v) satisfy the following equations for j = 2, 3, . . . , n,

c j,n(v) = 1

h(v)
c′

j−1,n−1(v)− h′(v)
h2(v)

c j−1,n−1(v)+ 1

h(v)
c j,n−1(v),

where c j,i (v) = 0 if j > i and c1,n(v) = 1/hn−1(v). It is not difficult to obtain

c1,n(v) = 1

hn−1(v)
, c2,n(v) = −

(
n
2

)
h′(v)
hn(v)

,

and

c3,n(v) =
(

n
3

)[
3(n + 1)

4

(h′(v))2

hn+1(v)
− h′′(v)

hn(v)

]
.

Note that |c j,n(v)| < ∞ if h(v) �= 0 and |h( j−1)(v)| < ∞ for 1 ≤ j ≤ n.
For simplicity, further on in the proof we drop the left subscript r − 1 in r−1 M j (v)

and write M j (v) instead. Using Leibniz rule for differentiation of the product of two
functions, we have for m ≥ 1
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Characterization of exponential distribution 753

dm−1

dvm−1 d1(v) = dm

dvm

{
Mk−1(v)H

n+k−1(v)
}

=
m∑

j=0

(
m
j

)
Mk−1+ j (v)

dm− j

dvm− j
Hn+k−1(v)

and hence (26) becomes

dn(v) = c1,n(v)

[
Mk−1(v)

dn

dvn
Hn+k−1(v)+ nMk(v)

dn−1

dvn−1 Hn+k−1(v)

+
(

n
2

)
Mk+1(v)

dn−2

dvn−2 Hn+k−1(v)

]

+c2,n(v)

[
Mk−1(v)

dn−1

dvn−1 Hn+k−1(v)+ (n − 1)Mk(v)
dn−2

dvn−2 Hn+k−1(v)

]

+c3,n(v)Mk−1(v)
dn−2

dvn−2 Hn+k−1(v)+ S(v,M, H), say. (27)

The last term, S(v,M, H), in (26) does not include derivatives of Hn+k−1(v) of order
higher than n − 3 and it is given by

S(v,M, H)=
2∑

j=0

⎡
⎣

n−2+ j∑
i= j+1

(
n − 2 + j

i

)
Mk−1+i (v)

dn−2+ j−i

dvn−2+ j−i
Hn+k−1(v)

⎤
⎦ c3− j,n(v)

+
n∑

j=3

⎡
⎣

n− j∑
i=0

(
n − j

i

)
Mk−1+i (v)

dn− j−i

dvn− j−i
Hn+k−1(v)

⎤
⎦ c j+1,n(v).

Note that |S(v,M, H)| < ∞ if |Mk−1+n(v)| < ∞ and |c j,n(v)| < ∞ for 0 ≤ j ≤ n.
Recall the formula for the nth derivative of f m(v) for positive integer m (e.g.,

Gradshteyn and Ryzhik (2007), p. 22).

dn

dvn
f m(v) =

n∑
i1=0

n−i1∑
i2=0

. . .

n−
m−2∑
j=1

i j∑
im−1=0

⎛
⎜⎝

m−1∏
p=1

⎛
⎜⎝n −

p−1∑
j=1

i j

i p

⎞
⎟⎠
⎞
⎟⎠
⎛
⎝ m∏

j=1

di j

dvi j
f (v)

⎞
⎠ ,

where i1, i2, . . . , im is a partition of n. Observe that a term in the right-hand side
includes f j (v) if exactly j of i1, . . . , im are zeros. Let us apply this formula to f m(v) =
Hn+k−1(v). Setting m = n + k − 1, we see that there are at least k − 1 zeros in the
partition i1, i2, . . . , in+k−1. Also the positions of j zeros among the terms of the par-

tition i1, i2, . . . , in+k−1 can be selected in

(
n + k − 1

j

)
ways. Therefore, we can
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list the terms in the right-hand side, starting with the one that contains Hk−1(v),
as follows.

dn

dvn
Hn+k−1(v) =

(
n + k − 1

k − 1

)(
n

1

)
. . .

(
1

1

)
(H ′(v))n Hk−1(v)

+
(

n − 1

1

)(
n + k − 1

k

)(
n

2

)(
n − 2

1

)(
n − 3

1

)
. . .

(
1

1

)

H ′′(v)(H ′(v))n−2 Hk(v)

+
(

n − 2

2

)(
n + k − 1

k + 1

)(
n

2

)(
n − 2

2

)(
n − 4

1

)(
n − 5

1

)
. . .

(
1

1

)

(H ′′(v))2(H ′(v))n−4 Hk+1(v)

+
(

n − 2

1

)(
n + k − 1

k + 1

)(
n

3

)(
n − 3

1

)(
n − 4

1

)
. . .

(
1

1

)

H ′′′(v)(H ′(v))n−3 Hk+1(v)+
n−1∑
j=3

c j (v, n)Hk−1+ j (v)

= (k + 1)kakhn(v)Hk−1(v)+
(

n

2

)
(k + 1)akhn−2(v)h′k(v)

+
(

n

3

)
ak

[
3(n + 1)

4
hn−4(v)h′2(v)+ hn−3(v)h′′(v)

]
Hk+1(v)

+
n−1∑
j=3

c j (v, n)Hk−1+ j (v),

where ak = (n +k −1)!/(k +1)! and c j (v, n) are functions of h(v) and its derivatives.
Note that |c j (v, n)| < ∞ if |h( j)(v)| < ∞ for j = 3, . . . n − 1. Similarly, for the
derivatives of Hn+k−1(v) of order n − 1 and n − 2 we find

dn−1

dvn−1 Hn+k−1(v) = (k + 1)akhn−1(v)Hk(v)+
(

n − 1
2

)
akhn−3(v)h′k+1(v)

+
n−1∑
j=3

c j (v, n − 1)Hk−1+ j (v),

where |c j (v, n − 1)| < ∞ if |h( j−1)(v)| < ∞ for j = 3, . . . n − 1; and

dn−2

dvn−2 Hn+k−1(v) = akhn−2(v)Hk+1(v)+
n−1∑
j=3

c j (v, n − 2)Hk−1+ j (v),
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where |c j (v, n − 2)| < ∞ if |h( j−2)(v)| < ∞ for j = 3, . . . n − 1. Using the above
three formulas we write (27) as

dn(v) = ak Mk−1(v)

hn−1(v)

⎡
⎣hn(v)Hk−1(v)+

(
n
2

)
(k + 1)hn−2(v)h′k(v)

+ 3

(
n
4

)
hn−4(v)h′2(v)Hk+1(v)+

(
n
3

)
hn−3(v)h′′k+1(v)

+
n−1∑
j=3

c j (v, n)Hk−1+ j (v)

⎤
⎦

+nak Mk(v)

hn−1(v)

⎡
⎣(k + 1)hn−1(v)Hk(v)+

(
n − 1

2

)
hn−3(v)h′k+1(v)

+
n−1∑
j=3

c j (v, n − 1)Hk−1+ j (v)

⎤
⎦+ ak Mk+1

hn−1(v)

(
n
2

)
hn−2(v)Hk+1(v)

+
n−1∑
j=3

c j (v, n − 2)Hk−1+ j (v)

−
(

n
2

)
ak Mk−1(v)h′(v)

hn(v)

⎡
⎣(k+1)hn−1(v)Hk(v)+

(
n−1

2

)
hn−3(v)h′k+1(v)

+
n−1∑
j=3

c j (v, n−1)Hk−1+ j (v)

⎤
⎦−

(
n
2

)
ak(n−1)Mk(v)h′(v)

hn(v)
hn−2(v)Hk+1(v)

+
n−1∑
j=3

c j (v, n − 2)Hk−1+ j (v)+
(

n
3

)[
3(n + 1)

4

h′2(v)
hn+1(v)

− h′′(v)
hn(v)

]

×ak Mk−1(v)h
n−2(v)Hk+1(v)+

n−1∑
j=3

c j (v, n − 2)Hk−1+ j (v)+ S(v,M, H)

= k(k + 1)ak Mk−1(v)h(v)H
k−1(v)+ n(k + 1)ak Mk(v)H

k(v)

+
(

n
2

)
ak

h(v)
Mk+1(v)H

k+1(v)

−
(

n
2

)
akh′(v)
h2(v)

Mk(v)H
k+1(v)+

n−1∑
j=3

b j (v)H
k−1+ j (v)+ S(v,M, H),

where |b j (v)| < ∞ if h(v) �= 0, |h( j)(v)| < ∞, and |Mk+1(v)| < ∞. This is
equivalent to (24). The statement in (25) follows from the conditions for finiteness of∑n−1

j=3 b j (v)Hk−1+ j (v) and S(v,M, H) given in the proof above. ��
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3 Proof of the Theorem

It follows from Lemma 2 in Yanev et al. (2008) that (2) is a necessary condition for X
to be exponential. Here we shall prove the sufficiency. The scheme of the proof is as
follows: (i) differentiate (2) r times with respect to v, to obtain a differential equation
for H(v); (ii) make an appropriate change of variables; (iii) assuming that there is a
non-exponential solution, reach a contradiction.

Recall the formula for the conditional density fk,r (t |u, v), say, of Rn given Rn−k =
u and Rn+r = v, where 1 ≤ k < n and r ≥ 1. Namely, it can be derived using the
Markov property of record values (e.g., Ahsanullah 2004, p. 6) that for u < t < v,

fk,r (t |u, v) = (k + r − 1)!
(k − 1)!(r − 1)!

(H(t)− H(u))k−1(H(v)− H(t))r−1

(H(v)− H(u))k+r−1 H ′(t). (28)

Using (28) we can write (2) as

v∫

u

g(k+r−1)(t)(H(t)− H(u))k−1(H(v)− H(t))r−1d H(t)

=r−1 Mk−1(u, v)(H(v)− H(u))k+r−1.

The continuity of F(x) implies H(lF+) = 0 and hence, letting u → lF+, we have

v∫

lF

g(k+r−1)(t)Hk−1(t)(H(v)− H(t))r−1d H(t) = r−1 Mk−1(v)H
k+r−1(v).

Differentiating the above equation r times with respect to v, dividing by h(v) > 0 prior
to every differentiation (after the first one), and applying Lemma 4 with n = r ≥ 2,
we obtain

(r − 1)!g(k+r−1)(v)h(v)Hk−1(v) = dr (v)

=
2∑

j=0

(
r
j

)
(k + r − 1)(r− j) r−1 Mk−1+ j (v)

Hk−1+ j (v)

h j−1(v)
(29)

−
(

r
2

)
(k + r − 1)(r−2) r−1 Mk(v)

(h′(v))k+1

h2(v)
+

r∑
j=3

c j (v)H
k−1+ j (v)

where c j (v) are as in the statement of Lemma 4. For simplicity, further on in the proof
we drop the left subscript r − 1 in r−1 M j (v) and write M j (v) instead. Multiplying
both sides of (29) by hr−1(v)(v − lF )

r−1/Hk+r−1(v) > 0 and making the change of
variables

w(v) = h(v)

H(v)
(v − lF ), (v > lF ),
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we find (for simplicity we write w for w(v))

(r − 1)!g(k+r−1)(v)wr−1 h(v)

H(v)

= wr−1 h(v)

H(v)

2∑
j=0

(
r
j

)
(k + r − 1)(r− j)Mk−1+ j (v)

H j (v)

h j (v)

−
(

r
2

)
(k + r − 1)(r−2)Mk(v)w

r−2 h′(v)
h(v)

(v − lF )+ S1(v), (30)

where

S1(v) = wr−1
r∑

j=3

c j (v)H
j−1(v).

Referring to Lemma 1 with n = r and u = lF , we write (30) as

wr−1 h(v)

H(v)

2∑
j=0

(
r
j

)
(k + r − 1)(r− j)(v − lF )

j Mk−1+ j (v)+ S2(v)

= wr−1 h(v)

H(v)

2∑
j=0

(
r
j

)
(k + r − 1)(r− j)Mk−1+ j (v)

H j (v)

h j (v)

−
(

r
2

)
(k + r − 1)(r−2)Mk(v)w

r−2 h′(v)
h(v)

(v − lF )+ S1(v), (31)

where

S2(v) = wr
r∑

j=3

(
r
j

)
(k + r − 1)(r− j)(v − lF )

j−1 Mk−1+ j (v).

It follows, from (31), after simplifying and rearranging terms, that

w(w − 1)(k + 1)r Mk(v)+ (w2 − 1)

(
r
2

)
Mk+1(v)(v − lF )

= −
(

r
2

)
h′(v)
h(v)

(v − lF )Mk(v)+ S1(v)− S2(v)

wr−2(k + r − 1)(r−2)
.

Finally, applying (19), we obtain

w(w − 1)(k + 1)r Mk(v)+ (w2 − 1)

(
r
2

)
Mk+1(v)(v − lF )

= −
(

r
2

)[
w′(v − lF )

w
+ w − 1

]
Mk(v)+ S1(v)− S2(v)

wr−2(k + r − 1)(r−2)
. (32)
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If F is exponential, then w(v) ≡ 1. Since the exponential F given by (1) satisfies
(2), we have that w(v) ≡ 1 is a solution of the above equation. To complete the proof
we must show that w(v) ≡ 1 is the only solution of (32). Suppose w(v) is a solution
of (32) and there exists a value v1 such thatw(v1) �= 1 and v1 > lF . We want to reach
a contradiction. Since F is twice differentiable, we have that w(v) is continuous with
respect to v and hence w(v) �= 1 for v in an open interval around v1. (For a similar
argument see Lemma 3 in Su et al. (2008)). Let

v0 = inf{v|w(v) �= 1}.

Since, by (20), w(lF+) = 1, we have v0 ≥ lF . We shall prove that v0 = lF . Assume
on contrary that v0 > lF . Then w(v) = 1 if lF < v ≤ v0 and integration of (18)
implies that h(v) is constant-valued in this interval. This contradicts the assumption
(ii). Therefore v0 = lF and hence equation (32) holds for all v > lF . Dividing (32)
by w − 1 �= 0, we obtain

w(k + 1)r Mk(v)+ (w + 1)

(
r
2

)
Mk+1(v)(v − lF )

= −
(

r
2

)[
w′(v − lF )

w(w − 1)
+ 1

]
Mk(v)+ S1(v)− S2(v)

wr−2(w − 1)(k + r − 1)(r−2)
. (33)

Passing to the limit as v → lF+ in the left-hand side of (33), we find (going back to
the notation r−1 Mk(v))

lim
v→lF +

[
wr(k + 1) r−1 Mk(v)+ (w + 1)

(
r
2

)
r−1 Mk+1(v)(v − lF )

]

= r(k + 1) lim
v→lF +w r−1 Mk(v)+

(
r
2

)
lim

v→lF +(w + 1)(v − lF )Mk+1(v)

= r(k + 1) r−1 Mk(lF+), (34)

where by (16), limv→lF +(v− lF ) r−1 Mk+1(v) = 0 provided that |g(k+r)(lF+)| < ∞.
Now we turn to the right-hand side of (33). First, consider the case r = 2. Since

S1(v) = S2(v) = 0, we have for the right-hand side of (33)

lim
v→lF + −

[
w′(v − lF )

w(w − 1)
+ 1

]
1 Mk(v) = −2 1 Mk(lF+) (35)

where by the second equation in (20), limv→lF +(v − lF )w
′/(w − 1) = 1. The equa-

tions (34) and (35) imply 2(k +1) 1 Mk(lF+) = −2 1 Mk(lF+), which is not possible.
This proves that w(v) ≡ 1 is the only solution of (32) when r = 2.

123



Characterization of exponential distribution 759

Let r ≥ 3. Consider

lim
v→lF +

S2(v)

w − 1
= lim
v→lF +w

r (v − lF )
2

w − 1

×
r∑

j=3

(
r
j

)
(k + r − 1)(r− j)(v − lF )

j−3
r−1 Mk−1+ j (v). (36)

By (21) we have limv→lF +(v− lF )
2/(w− 1) = 0. In addition, by Lemma 2 we have

that if |g(k+r+2)(lF+)| < ∞, then

lim sup
v→lF +

| r−1 Mk+2(v)| < ∞ and

lim
v→lF +(v − lF )

j−3
r−1 Mk−1+ j (v) = 0, j = 4, 5, . . . r.

Therefore, under the assumptions of the theorem, the limit in (36) is zero.
Let us now prove that

lim
v→lF +

S1(v)

w − 1
= lim
v→lF +

H2(v)

w − 1

r∑
j=3

c j (v)H
j−3(v) = 0. (37)

It is not difficult to see that limv→łF + H2(v)/(w − 1) = 0. Indeed, Assumption (ii),
(18), and the first part of (20) together imply that H(v) ∼ const.(v−lF ), where const.
is not zero. The limit assertion now follows from (21). Hence, to prove (37), it is suf-
ficient to establish that the sum in its right-hand side is finite. According to (25) with
n = r , this is true if h(lF+) �= 0, |h(r−1)(lF+)| < ∞ and |g(k+2r−1)(lF+)| < ∞,
which hold by the assumptions of the theorem.

Taking into account (36) and (37), passing to the limit in (33) as v → lF , we obtain,
similarly to the case r = 2, that r(k + 1) r−1 Mk(lF+) = −r(r − 1) r−1 Mk(lF+) as
v → lF+. This contradiction proves that w(v) ≡ 1 is the only solution of (32). The
proof of the theorem is complete.
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