
Metrika (2008) 68:51–64
DOI 10.1007/s00184-007-0142-7

Characterizations of probability distributions
via bivariate regression of record values

George P. Yanev · M. Ahsanullah · M. I. Beg

Received: 4 October 2006 / Published online: 17 July 2007
© Springer-Verlag 2007

Abstract Bairamov et al. (Aust N Z J Stat 47:543–547, 2005) characterize the expo-
nential distribution in terms of the regression of a function of a record value with its
adjacent record values as covariates. We extend these results to the case of non-adjacent
covariates. We also consider a more general setting involving monotone transforma-
tions. As special cases, we present characterizations involving weighted arithmetic,
geometric, and harmonic means.
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1 Introduction and main results

Let X1, X2, . . . be independent copies of a random variable X whose distribution
function is denoted by F . There is a number of studies on characterizations of F by
means of regression relations of a function of one record value on one or two other
record values. For a recent paper on the subject we refer to Pakes (2004) (see also
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52 G. P. Yanev et al.

Ahsanullah and Raqab 2006, Chapt. 6). Denote upper record times by L(1) = 1 and,
for n > 1,

L(n) = min{ j : j > L(n − 1) and X j > X L(n−1)},

and the corresponding upper record value by X (n) = X L(n); see Nevzorov (2001).
Gupta and Ahsanullah (2004) study the characterization of F by means of the equation

E[ψ(X (n))|X (n − k) = z] = ϕ(z),

for k = 1 and k = 2, where the functionsψ and ϕ satisfy certain regularity conditions.
Bairamov et al. (2005) consider a characterization of the exponential distribution in
terms of the regression on two adjacent record values

E[ψ(X (n))|X (n − 1) = u, X (n + 1) = v] (lF < u < v < rF ),

where lF = inf{x : F(x) > 0} and rF = sup{x : F(x) < 1} are the left and right
extremities of F , respectively.

The aim of this paper is to extend the results given in Bairamov et al. (2005) by
studying characterizations of F in terms of the regression on two non-adjacent record
values

E[ψ(X (n))|X (n − k) = u, X (n + r) = v] (lF < u < v < rF ),

where 1 ≤ k ≤ n − 1 and r ≥ 1. Further on, for a given function h, we adopt the
notation

M(u, v) = h(v)− h(u)

v − u
, i M j (u, v) = ∂ i+ j

∂ui∂v j

(
h(v)− h(u)

v − u

)
(u �= v), (1)

as well as i M(u, v) and M j (u, v) for the i th and j th partial derivative of M(u, v)with
respect to u and v, respectively. Bairamov et al. (2005) characterize the exponential
distribution as follows.

Theorem (Bairamov et al. 2005). Suppose F is absolutely continuous with density
f , that h is continuous in [lF , rF ] and continuously differentiable in (lF , rF ), and that
almost everywhere in this open interval

h′(x) �= M(lF , x). (2)

Then

E[h′(X (n))|X (n − 1) = u, X (n + 1) = v] = M(u, v) (lF < u < v < rF ) (3)

holds if and only if lF > −∞, rF = ∞ and

F(x) = 1 − e−c(x−lF ) (x ≥ lF ),

where c > 0 is an arbitrary constant.
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Characterizations via bivariate regression of record values 53

Next result is a generalization of the above theorem to the case of regression on a
pair of non-adjacent record values. Namely, (3) is extended for 1 ≤ k ≤ n − 1 and
r ≥ 1 to

E[h(k+r−1)(X (n))|X (n − k) = u, X (n + r) = v]
= (k + r − 1)!
(k − 1)!(r − 1)! r−1 Mk−1(u, v) (lF < u < v < rF ). (4)

We consider two cases with respect to the spacings from the right record value in the
condition as follows: X (n) is one spacing away (there is a gap of size one); or X (n)
is two or more spacings away (there is a gap of size two or more). The techniques of
the proofs in these two cases differ.

Theorem 1 Suppose F is absolutely continuous and h is continuous in [lF , rF ] and
h(k+r−1)(x) is continuous in (lF , rF ) for 1 ≤ k ≤ n − 1 and r ≥ 1.

A. Let r = 1, 1 ≤ k ≤ n − 1 and

Mk(lF , v) �= 0 (lF < v < rF ). (5)

Then (4) holds if and only if

F(x) = 1 − e−c(x−lF ) (x ≥ lF ) and lF > −∞, rF = ∞, (6)

where c > 0 is an arbitrary constant.
B. Let r ≥ 2, 2 ≤ k ≤ n − 1 and r Mk−1(lF , v) �= 0(lF < v < rF ). Then both (4)

and

E[h(k+r−1)(X (n))|X (n − k + 1) = u2, X (n + r) = v]
= (k + r − 2)!
(k − 2)!(r − 1)! r−1 M ′

k−2(u2, v) (lF < u < u2 < v < rF ), (7)

where M ′(u, v) = [h′(v)− h′(u)]/(v − u), hold if and only if (6) is true.

Remarks (i) If k = r = 1, then Theorem 1A coincides with Theorem 1 in Bairamov
et al. (2005) because, using (9) below, the assumption (2) can be written as M1(lF , v) �=
0. (ii) The statement in Theorem 1A holds true when k = 1 and r ≥ 1 as well [with
r M(lF , v) �= 0 instead of (5)] and can be proved along the same lines, differentiating
with respect to u instead of v.

The following result is an extension of Theorem 2 in Bairamov et al. (2005) to
regression on a pair of non-adjacent covariates. As we will see in the next section, it
follows from Theorem 1 choosing h(x) = xk+r/(k + r)!.
Theorem 2 A. Let r = 1. For 1 ≤ k ≤ n − 1

E[X (n)|X (n − k) = u, X (n + r) = v] = ru + kv

k + 1
(lF < u < v < rF ) (8)

if and only if the continuous r.v. X has the exponential distribution (6).
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B. If r ≥ 2 and 2 ≤ k ≤ n − 1, then both (8) and for lF < u < u2 < v < rF

E[X (n)|X (n − k + 1) = u2, X (n + r) = v] = ru2 + (k − 1)v

r + k − 1

hold if and only if the continuous r.v. X has the exponential distribution (6).

The proofs of Theorems 1 and 2 are given in Sect. 2. In Sect. 3 we consider monotone
transformations which extend the results in the previous sections to a more general
setting. Illustrations are given in terms of characterizations involving arithmetic, geo-
metric, and harmonic means.

2 Proofs of Theorems 1 and 2

Further on we will need some recurrent relations for the derivatives of M(u, v) given
in the following lemma.

Lemma 1 Let h(x) be a given function and for integer i, j ≥ 1 define M(u, v),
i M(u, v), M j (u, v), and i M j (u, v) as in (1). If h(x) has a continuous derivative of
order max{i, j} over the interval (a, b), then for a < u < v < b

M j (u, v) = h( j)(v)− j M j−1(u, v)

v − u
, j M(u, v) = j j−1 M(u, v)− h( j)(u)

v − u
(9)

and

i M j (u, v) = ii−1 M j (u, v)− j i M j−1(u, v)

v − u
, (10)

where M1(u, v) and 1 M(u, v) are given in (9) and 1 M1(u, v) = (M1(u, v) −
1 M(u, v))/(v − u).

Proof It is not difficult to prove (9) by induction. We will proceed with the proof of
(10). One can check (10) for i = 1, 2 and j = 1, 2. Assume that (10) holds for some
(i, j). Fixing i we shall prove it for (i, j + 1), i.e.,

i−1 M j+1(u, v)− ( j + 1) i M j (u, v) = (v − u) i M j+1(u, v)

Indeed, using the induction assumption, we have

i i−1 M j+1(u, v)− ( j + 1) i M j (u, v) = ∂

∂v

[
ii−1 M j (u, v)− j i M j−1(u, v)

]
− i M j (u, v)

= ∂

∂v

[
(v − u) i M j (u, v)

] − i M j (u, v)

= (v − u) i M j+1(u, v).

Similarly, assuming (10) for an i and fixed but arbitrary j , one can prove that it holds
for (i + 1, j). The lemma is proved. ��
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Denote R(x) = − ln(1 − F(x)). Using the Markov dependence of record values,
one can show (e.g., Ahsanullah 2004) that the conditional density of X (n) given
X (n − k) = u (1 ≤ k ≤ n − 1) and X (n + r) = v (r ≥ 1) is

(k + r − 1)!
(k − 1)!(r − 1)!

[
R(t)− R(u)

R(v)− R(u)

]k−1 [
R(v)− R(t)

R(v)− R(u)

]r−1 R′(t)
R(v)− R(u)

, (11)

where u < t < v.
We will need the following lemma, which is of independent interest as well.

Lemma 2 Let h(x) be a continuous in [lF , rF ] function such that h(k+r−1)(x) is con-
tinuous in (lF , rF ) for 1 ≤ k ≤ n − 1 and r ≥ 1. If

F(x) = 1 − e−c(x−lF ) (x ≥ lF ) and lF > −∞, rF = ∞,

where c > 0 is an arbitrary constant, then

E[h(k+r−1)(X (n))|X (n − k) = u, X (n + r) = v]
= (k + r − 1)!
(k − 1)!(r − 1)! r−1 Mk−1(u, v) (lF < u < v < rF ). (12)

Proof It is not difficult to verify (12) for k = r = 1. Let us prove it for r = 1 and any
1 ≤ k ≤ n − 1, i.e.,

E[h(k)(X (n))|X (n − k) = u, X (n + 1) = v] = k Mk−1(u, v) (13)

for 1 ≤ k ≤ n − 1. Assuming that (13) is true for k = i (1 ≤ i ≤ n − 1), we will
prove it for k = i + 1. Indeed, making use of (11) with R(x) = c(x − lF ) and the
induction assumption, we obtain

E[h(i+1)(X (n))|X (n − i − 1) = u, X (n + 1) = v]

= i + 1

(v − u)i+1

v∫
u

h(i+1)(t)(t − u)i dt

= i + 1

(v − u)i+1

⎡
⎣h(i)(v)(v − u)i − i

v∫
u

h(i)(t)(t − u)i−1dt

⎤
⎦

= i + 1

(v − u)i+1

×
[
h(i)(v)(v − u)i − (v − u)i E[h(i)(X (n))|X (n − i) = u, X (n + 1) = v]

]

= i + 1

(v − u)i+1

[
h(i)(v)(v − u)i − i(v − u)i Mi−1(u, v)

]

= i + 1

v − u

[
h(i)(v)− i Mi−1(u, v)

]
= (i + 1)Mi (u, v),
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where the last equality follows from (9). This proves (13) for k = i + 1 and thus (12)
is true for r = 1 and any 1 ≤ k ≤ n − 1. Similarly one can prove (12) for k = 1 and
any r ≥ 1, i.e.,

E[h(r)(X (n))|X (n − 1) = u, X (n + r) = v] = r r−1 M(u, v) (14)

To complete the proof of the lemma we need to show (12) for r ≥ 2 and 2 ≤ k ≤
n − 1. Let us assume (12) for r = j and any 2 ≤ k ≤ n − 1. We will prove it for
r = j + 1 and any 2 ≤ k ≤ n − 1. Since the left-hand side of (12) for r = j + 1 is

E[h(k+ j)(X (n))|X (n − k) = u, X (n + j + 1) = v]

= (k + j)!(v − u)−(k+ j)

(k − 1)! j !
v∫

u

h(k+ j)(t)(t − u)k−1(v − t)r dt,

to prove (12) for r = j + 1 we need to show that for 2 ≤ k ≤ n − 1

I (k, j + 1) =
v∫

u

h(k+ j)(t)(t − u)k−1(v − t) j dt

= (v − u)k+ j
j Mk−1(u, v) (15)

under the induction assumption that for any 2 ≤ k ≤ n − 1

I (k, j) =
v∫

u

h(k+ j−1)(t)(t − u)k−1(v − t) j−1dt

= (v − u)k+ j−1
j−1 Mk−1(u, v) (16)

Integrating by parts, we have for 2 ≤ k ≤ n − 1

I (k, j) =
v∫

u

h(k+ j−1)(t)(t − u)k−1(v − t) j−1dt

= 1

j

v∫
u

h(k+ j)(t)(t − u)k−1(v − t) j dt

+k − 1

j

v∫
u

h(k+ j−1)(t)(t − u)k−1(v − t) j dt
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Let (x)n be the falling factorial, i.e., (x)n = x(x − 1) · · · (x − n + 1) (n ≥ 1) and
(x)0 = 1. After iterating, we have for 2 ≤ k ≤ n − 1

I (k, j + 1) = j I (k, j)− (k − 1)I (k − 1, j + 1)

= j
k−2∑
i=0

(−1)i (k − 1)(i) I (k − i, j)

+(−1)k−1(k − 1)(k−1)

v∫
u

h( j+1)(t)(v − t) j dt (17)

Observe that (14) and (9) lead to

v∫
u

h( j+1)(t)(v − t) j dt = −h( j)(u)(v − u) j + j

v∫
u

h( j)(t)(v − t) j−1dt

= (v − u) j

×
{
−h( j)(u)+E[h( j)(X (n))|X (n − 1)= u, X (n + j)= v]

}

= (v − u) j [−h( j)(u)+ j j−1 M(u, v)]
= (v − u) j [−h( j)(u)+ (v − u) j M(u, v)+ h( j)(u)]
= (v − u) j+1

j M(u, v) (18)

Using the induction assumption (16) and (18) we write (17) as

I (k, j + 1)

(v − u) j+1 = j
k−2∑
i=0

(−1)i (k − 1)(i)(v − u)k−2−i
j−1 Mk−1−i (u, v)

−(−1)k−2(k − 1)(k−1) j M(u, v) (19)

Now, applying (10) and iterating, we obtain

I (k, j + 1)

(v − u) j+1 = j
k−3∑
i=0

(−1)i (k − 1)(i)(v − u)k−2−i
j−1 Mk−1−i (u, v)

+(−1)k−2(k − 1)(k−2)
[

j j−1 M1(u, v)− j M(u, v)
]

= j
k−3∑
i=0

(−1)i (k − 1)(i)(v − u)k−2−i
j−1 Mk−1−i (u, v)

−(−1)k−3(k − 1)(k−2)(v − u) j M1(u, v)

= j
k−4∑
i=0

(−1)i (k − 1)(i)(v − u)k−2−i
j−1 Mk−1−i (u, v)

+(−1)k−3(k − 1)(k−3)(v − u)
[

j j−1 M2(u, v)− 2 j M1(u, v)
]
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= j
k−4∑
i=0

(−1)i (k − 1)(i)(v − u)k−2−i
j−1 Mk−1−i (u, v)

−(−1)k−4(k − 1)(k−3)(v − u)2 j−1 M2(u, v)

. . .

= j (v − u)k−2
j−1 Mk−1 − (k − 1)(v − u)k−2

j−1 Mk−2(u, v)

= (v − u)k−1
j−1 Mk−1(u, v).

This implies (15). Similarly assuming (12) for k = i (2 ≤ i ≤ n − 2) and any r ≥ 2
one can prove it for k = i + 1 and r ≥ 2. The lemma is proved. ��

2.1 Proof of Theorem 1A

Assume (4). Setting r = 1 in (11), we obtain from (4)

Mk−1(u, v)[R(v)− R(u)]k =
v∫

u

h(k)(t)[R(t)− R(u)]k−1 R′(t)dt.

Letting u → l+F and noting that the integrand is continuous and limu→l+F
R(u) =

limu→l+F
(− ln(1 − F(u))) = 0 we simplify to

Mk−1(lF , v)[R(v)]k =
v∫

lF

h(k)(t)[R(t)]k−1 R′(t)dt.

Differentiating both sides of the above equation with respect to v, we obtain

k Mk−1(lF , v)[R(v)]k−1 R′(v)+ Mk(lF , v)[R(v)]k = h(k)(v)[R(v)]k−1 R′(v)

Rearranging and taking into account (9),

R′(v)
R(v)

= Mk(lF , v)

h(k)(v)− k Mk−1(lF , v)

= Mk(lF , v)

(v − lF )Mk(lF , v)

= 1

v − lF
,

(provided that Mk(lF , v) �= 0) and hence (6) holds. It follows that lF > −∞ and
c > 0, and the continuity of F implies that rF = ∞.

The converse statement follows from Lemma 2. The proof is complete.
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2.2 Proof of Theorem 1B

Assume both (4) and (7) are true. Formula (11) together with (4) imply

r−1 Mk−1(u, v) [R(v)− R(u)]k+r−1

=
v∫

u

h(k+r−1)(t) [R(v)− R(t)]r−1 [R(t)− R(u)]k−1 R′(t)dt.

Since the integrand is continuous, differentiating both sides of the above equation with
respect to u, we obtain

r Mk−1(u, v) [R(v)− R(u)]k+r−1

− (k + r − 1) [R(v)− R(u)]k+r−2 R′(u) r−1 Mk−1(u, v)

=−(k−1)R′(u)
v∫

u

h(k+r−1)(t) [R(v)−R(t)]r−1 [R(t)−R(u)]k−2 R′(t)dt. (20)

On the other hand, (7) and (11) lead to

r−1 M ′
k−2(u2, v) [R(v)− R(u2)]

k+r−2

=
v∫

u2

h(k+r−1)(t) [R(v)− R(t)]r−1 [R(t)− R(u2)]
k−2 R′(t)dt. (21)

Therefore, letting u2 → u+ in (21) and rearranging terms, we write (20) as

R′(u)
R(u)− R(v)

= r Mk−1(u, v)

(k − 1) r−1 M ′
k−2(u, v)− (k + r − 1) r−1 Mk−1(u, v)

(22)

provided that the denominator in the right-hand side is not 0 (This is equivalent to
r Mk−1(u, v) �= 0, as we will see below). Since

r−1 M ′
k−2(u, v) = ∂k+r−3

∂ur−1∂vk−2

[
h′(v)− h′(u)

v − u

]

= ∂k+r−3

∂ur−1∂vk−2 [M1(u, v)+ 1 M(u, v)]

= r−1 Mk−1(u, v)+ r Mk−2(u, v),

for the denominator in (22) we have

(k − 1) r−1 M ′
k−2(u, v)− (k + r − 1) r−1 Mk−1(u, v)

= (k − 1)[ r−1 Mk−1(u, v)+ r Mk−2(u, v)] − (k + r − 1) r−1 Mk−1(u, v)

= (k − 1) r Mk−2(u, v)− r r−1 Mk−1(u, v). (23)
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Finally, from (22) to (23) and applying (10), we obtain

R′(u)
R(u)− R(v)

= r Mk−1(u, v)

(k − 1) r Mk−2(u, v)− r r−1 Mk−1(u, v)

= r Mk−1(u, v)

r Mk−1(u, v)(u − v)

= 1

u − v
.

Integrating both sides with respect to u from lF to v, we obtain

ln[R(v)− R(lF )] = ln(v − lF )+ ln c (c > 0)

and thus R(v) = c(v − lF ) and (6) follows.
The converse statement in the theorem follows from Lemma 2.

2.3 Proof of Theorem 2

Let h(x) = xk+r/(k + r)! and thus h(k+r−1)(x) = x . We shall prove that, with this
choice of h, (4) becomes

E[X (n)|X (n − k) = u, X (n + r) = v] = ru + kv

k + r
(lF < u < v < rF ). (24)

Indeed,

M(u, v) = 1

(k + r)!
vk+r − uk+r

v − u

= vk+r−1 + · · · + vkur−1 + vk−1ur + · · · + uk+r−1

(k + r)!

and differentiating r − 1 and k − 1 times with respect to u and v, we obtain

(k + r − 1)!
(k − 1)!(r − 1)! r−1 Mk−1(u, v) = (k + r − 1)!

(r − 1)!(k − 1)!
(r − 1)!k!v + r !(k − 1)!u

(k + r)!
= ru + kv

k + r
, (25)

which proves (24). Now, if r = 1 [note that Mk(lF , v) = lF/(k +1) �= 0] the claim in
Theorem 2A follows from Theorem 1A. Similarly to (25) one can see that (7) becomes
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Characterizations via bivariate regression of record values 61

E[X (n)|X (n − k + 1) = u2, X (n + r) = v] = (k + r − 2)!
(k − 2)!(r − 1)! r−1 M ′

k−2(u2, v)

= ru2 + (k − 1)v

k + r − 1
. (26)

Theorem 1B, (25) and (26) imply Theorem 2B. The proof is complete.

3 Monotone transformations and some particular cases

In this section, following Bairamov et al. (2005), we give a formal generalization of
Theorem 1, involving a monotone transformation of X . Let Y be a random variable
with distribution function G. The corresponding upper record values are denoted by
Y (n). The following extension of Theorem 1A holds. The proof is similar to that of
Theorem 3 in Bairamov et al. (2005) and it is omitted here. Denote for i, j ≥ 0

i M j (T (s), T (t)) = ∂ i+ j

∂xi∂y j

(
h(y)− h(x)

y − x

)
|x=T (s), y=T (t) (y �= x).

Theorem 3 Suppose that

(i) Y has a continuous distribution function G on [lG, rG ];
(ii) the function T is continuous and strictly increasing in (lG, rG), τ = T (lG+) >

−∞ and T (rG) = ∞; and
(iii) h(k+r−1)(x) is continuous in (τ,∞) for 1 ≤ k ≤ n − 1 and r ≥ 1.

A. Let r = 1 and Mk(τ, T (t)) �= 0 (lG < t < rG). Then for 1 ≤ k ≤ n − 1 and
lG < s < t < rG

E[h(k)(T (Y (n)))|Y (n − k) = s,Y (n + 1) = t] = k Mk−1(T (s), T (t)) (27)

if and only if
G(y) = 1 − e−c[T (y)−τ ] (lG < y < rG) (28)

where c > 0 is an arbitrary constant.
B. Let r ≥ 2 and 2 ≤ k ≤ n − 1, and r Mk−1(τ, T (t)) �= 0 where lG < t < rG.

Then both (27) and for lG < s < s2 < t < rG

E[h(k+r−1)(T (Y (n)))|Y (n − k + 1) = s2,Y (n + r) = t]
= (k + r − 2)!
(k − 2)!(r − 1)! r−1 M ′

k−2(T (s2), T (t))

hold if and only if (28) is true.

Remark An analog of Theorem 3 when T is a strictly decreasing function holds as
well; for the case k = r = 1 see Bairamov et al. (2005), Theorem 3.

Different choices of functions h and T in the above theorem yield many character-
ization results. The corollary below gives a characterization that involves a weighted
arithmetic mean.
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Corollary 1 Let (i) and (ii) of Theorem 3 hold. If 1 ≤ k ≤ n − 1, then for a strictly
increasing function g

E[g(Y (n))|Y (n − k) = s,Y (n + 1) = t] = kg(t)+ g(s)

k + 1
(lG < s < t < rG)

holds if and only if

G(y) = 1 − e−c[g(y)− g(τ )] (lG < y < rG),

where c > 0 is an arbitrary constant.

Proof The corollary follows from Theorems 2A and 3 setting T (y) = g(y) and
h(x) = xk+1/(k + 1)!.

Next corollary presents characterizations involving a geometric mean as a special
case.

Corollary 2 Let (i) and (ii) of Theorem 3 hold. If 1 ≤ k ≤ n − 1, then for a strictly
decreasing function g and lG < s < t < rG

E[g(Y (n))|Y (n − k) = s,Y (n + 1) = t] = [g(t)]k/(k+1)[g(s)]r/(k+1) (29)

holds if and only if

G(y) = 1 − e
−c

{
[g(y)]−1/(k+1) − [g(τ )]−1/(k+1)

}
(lG < y < rG),

where c > 0 is an arbitrary constant.

Proof We will show that if h(x) = −x−1, then for j = 1, 2, . . .

M j (x, y) = (−1) j j !
xy j+1 . (30)

Indeed, one can check that M1(x, y) = −1/(xy2). Assuming that (30) is true for j ,
we will prove it for j + 1. Using (9) we have

M j+1(x, y) = 1

y − x

[
(−1) j+2 ( j + 1)!

y j+2 − ( j + 1)(−1) j j !
xy j+1

]

= 1

y − x

[
(−1) j+1 ( j + 1)!(y − x)

xy j+2

]

= (−1) j+1 ( j + 1)!
xy j+2

and thus (30) follows by induction. Now, let us set for 1 ≤ k ≤ n − 1

h(x) = (−1)k

k!x and thus h(k)(x) = 1

xk+1 .
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It is not difficult to see that, with this choice of h, (27) and (30) yield

E

[
1

[T (Y (n))]k+1 |Y (n − k) = s,Y (n + 1) = t

]
= 1

T (s)[T (t)]k
.

Setting in the last equation T (x) = [g(x)]−1/(k+1), leads to the statement of the
corollary.

It is worth noting that if k = r = 1, then the right-hand side in (29) is the geometric
mean of g(s) and g(t). ��

Next corollary is a characterization in terms of a harmonic mean.

Corollary 3 Let (i) and (ii) of Theorem 3 hold. For a strictly decreasing function g,

E[g(Y (n))|Y (n − 1) = s,Y (n + 1) = t] = 2g(s)g(t)

g(s)+ g(t)
(lG < s < t < rG).

holds if and only if

G(y) = 1 − e
−c

{
[g(y)]−2 − [g(τ )]−2

}
(lG < y < rG)

where c > 0 is an arbitrary constant.

Proof The result follows from Theorem 3 setting h(x) = 2x1/2 and T (y) = [g(y)]−2.
Finally, let us note that Theorem 3 and its corollaries yield many special cases.

In particular, one can easily adjust to our more general setting the examples given in
Bairamov et al. (2005). We present here only two examples making use of Corollary 2.

Example 1 (Weibull distribution). Let lG = 0, rG = ∞, and g(y) = y−α(k+1). Then,
according to Corollary 2, Y has the Weibull distribution with G(y) = 1 − exp{−cyα}
if and only if for 1 ≤ k ≤ n − 1

E
[
[Y (n)]−α(k+1) | Y (n − k) = s,Y (n + 1) = t

]
= t−αks−α,

where 0 < s < t < ∞. In particular, a random variable Ỹ has the Inverse Weibull
distribution with G̃(y) = exp{−cy1/2} if and only if

E
[
Ỹ (n) | Ỹ (n − 1) = s, Ỹ (n + 1) = t

]
= √

st .

Example 2 (Pareto distribution). Let lG = a > 0, rG = ∞, and g(y) =
[log y]−(k+1). Then, Y has the Pareto distribution with G(y) = 1 − (a/y)c (y ≥ a)
if and only if for 1 ≤ k ≤ n − 1,

E
[
[log Y (n)]−(k+1) | Y (n − k) = s,Y (n + 1) = t

]
= [log t]−k[log s]−1,

where a ≤ s < t < ∞. Note that the regression relation is independent of a.
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