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Abstract
The sum of independent, but not necessary identically distributed, exponential random
variables follows a hypoexponential distribution. We focus on a particular case when
all but one rate parameters of the exponential variables are identical. This is known as
exponentiallymodifiedErlang distribution inmolecular biology.We prove a character-
ization of the exponential distribution, which complements previous characterizations
via hypoexponential distribution with all rates different from each other.

Keywords Characterizations · Exponential distribution · Hypoexponential
distribution · Exponentially modified Erlang distribution

Mathematics Subject Classification 62G30 · 62E10

1 Introduction andMain Results

Sumsof exponentially distributed randomvariables play a central role inmany stochas-
tic models of real-world phenomena. The hypoexponential distribution arises as a
convolution of n independent exponential distributions each with their own rate λi ,
the rate of the i-th exponential distribution. It belongs to the class of phase-type dis-
tributions. Many processes can be divided into sequential phases. If the time periods
spent in different phases of the process are independent but not necessary identi-
cally distributed exponential variables, then the overall time is hypoexponential. For
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Fig. 1 Absorption time for a Markov chain with five states

example, the absorption time for a finite-state Markov chain follows this distribution
(Fig. 1).

We will write Xi ∼ Exp(λi ), λi > 0, if Xi for i = 1, 2, . . . has density

fi (x) = λie
−λi x , x ≥ 0 (exponential distribution). (1)

The distribution of the sum

Yn = X1 + X2 + · · · + Xn ∼ HypoE(λ1, λ2, . . . , λn),

where λi for i = 1, . . . , n are not all identical, is called (general) hypoexponential
distribution (e.g., [1] and [2]). Assume that all λi ’s are distinct, i.e., λi �= λ j when
i �= j . It is well known that under this condition, the density of Yn is given by (see
[3], p.309 and [4], p.40, Problem 12) for x > 0

fYn (x) =
n∑

j=1

� j f j (x), λi �= λ j , i �= j .

Here the weight � j is defined as � j = ∏n
i=1,i �= j λi (λi −λ j )

−1. Thus, the density of the
sum of independent exponential random variables with distinct parameters is linear
combination of the individual densities. For example, the density of Y2 is

fY2(x) = λ2

λ2 − λ1
f1(x) + λ1

λ1 − λ2
f2(x), λ1 �= λ2.

Let X1 and X2 be two independent copies of a nonnegative random variable X and
E[X ] < ∞. If X ∼ Exp(λ), then X1 + X2/2 ∼ HypoE (λ, 2λ). It was proved in [5]
that this property of the exponential distribution is not shared by any other continuous
distribution, i.e., for λ > 0

X ∼ Exp(λ) iff X1 + 1

2
X2 ∼ HypoE (λ, 2λ) . (2)
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The key argument in the proof is that the Laplace transform (LT) of the exponential
distribution with λ > 0

�(t) = λ

λ + t
, t ≥ 0 (3)

is the unique LT solution of the equation

�(t)�

(
t

2

)
= 2�(t) − �

(
t

2

)
, t ≥ 0.

Motivated by (2), in [6] we extended it in two directions: (i) for any number n ≥ 2 of
independent copies X1, X2, . . . , Xn of X and (ii) for the linear combination

μ1X1 + μ2X2 + · · · + μn Xn μi �= μ j , i �= j, μi > 0,

i.e., with arbitrary positive and distinct coefficients μ1, μ2, . . . , μn . Namely, it was
proved in [6], under some additional assumptions, that for λ > 0

X ∼ Exp(λ) iff
n∑

k=1

μk Xk ∼ HypoE

(
λ

μ1
,

λ

μ2
, . . . ,

λ

μn

)
. (4)

This characterization was obtained by showing that (3) is the unique LT solution of
the equation

�(μ1t)�(μ2t) · · ·�(μnt) = �n
j=1l j�(μ j t), t ≤ 0,

where �̄ j = ∏n
i=1,i �= j μ j (μ j − μi )

−1. Thus, the case of the rate parameters λi ’s in
(1) being all different from each other was settled down. Note that characterization
results in the case of distinct but not necessary positive μ1, μ2, . . . , μn were recently
obtained, in [7], under an additional assumption.

The other extreme case of all λi ’s equal leads to Erlang distribution of the sum.
Assume Xi ∼ Exp(λ), i.e., λ1 = λ2 = · · · = λn = λ and let

Yn = X1 + X2 + · · · + Xn .

If � is the common LT of Xi , then for t > 0

�Yn (t) = �n(t) =
(

λ

λ + t

)n

. (5)

If we go in the opposite direction, assuming Yn ∼ Erl(n, λ), then (5) yields �i (t) =
λ(λ+ t)−1 for each i = 1, 2, . . . , n, which in turn implies Xi ∼ Exp(λ). By words, if
Xi are independent and identically distributed r.v.’s and Yn is Erlang, then the common
distribution is exponential.

The question arises whether a similar characterization holds when the rate param-
eters λi ’s ofHypoE(λ1, λ2, . . . , λn) are neither all different nor all equal. It is our goal
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in this paper to show that, at least in one particular case, the answer to this question is
affirmative.

Without the condition that all parameters λi ’s are different or equal, the hypoexpo-
nential density has a quite complex form ( [8]). This makes the analysis of the general
case difficult. In this paper, we consider the particular case of “all-but-one-equal” rate
parameters.

More precisely, let X1, X2, . . . , Xn+1 be independent copies of X ∼ Exp(λ). Con-
sider the sum

X1 + X2 + · · · + Xn + wXn+1, w > 0, w �= 1. (6)

This sum has a convoluted Erlang distribution, which is also known as exponentially
modified Erlang (EME) distribution ( [9, 10]).

Recall thewell-known (e.g., [11], p.240)Cramér’s condition.We say that X satisfies
Cramér’s condition if there is a number t0 > 0 such that E[et X ] < ∞ for all t ∈
(−t0, t0). The next theorem establishes, under Cramér’s condition, a necessary and
sufficient condition for X ∼ Exp(λ).

Theorem Suppose that X1, X2, . . . , Xn+1, n ≥ 1, are independent copies of a non-
negative and absolutely continuous randomvariable X. Assume further that X satisfies
Cramér’s condition. Then for some λ > 0, fixed positive integer n and fixed positive
real w �= 1

X ∼ Exp(λ) iff
n∑

k=1

Xk + wXn+1 ∼ HypoE

(
λ, λ, . . . , λ,

λ

w

)
. (7)

The hypoexponential family of distributions has found use in diverse applied fields,
including queuing theory ( [12]), population genetics ( [13]), reliability analysis ( [14]),
medicine ( [15]) and cell biology ( [10, 16]). We focus on a particular member of this
family, namely the exponentially modified Erlang distribution. The (proper) Erlang
distribution is applied in modeling the cell cycle phase progression as a series of sub-
phase transitions with the same rate λ. The relevant biological interpretation of the
Erlang model is that each cell cycle phase can be viewed as a multi-step biochemical
process that needs to be completed sequentially in order to advance to the next cell
cycle phase.

Although the identical-stage model is convenient from a mathematical perspective,
it has been shown to be outperformed by a number of other distributions. Particularly,
it was shown in [9] that one of the most appropriate distributions for representing cell
cycle times is the EME distribution, whichmodels a series of exponentially distributed
random variables when one of them has a different rate. Under this assumption, the
multistage cell cycle model is described as follows

X1
λ1−→ X2

λ1−→ · · · Xk
λ1−→ Xk+1

λ2−→ 2X1. (8)

Note that, in the system (8), the rate of progression is identical through eachof the initial
k stages of cell cycle and that we have added an additional exponentially distributed
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stage at the end whose rate, λ2, is distinct from the rate, λ1, of the previous k stages.
Assume that the characteristic time (CT) of one of the transitions is significantly bigger
than the CT’s of all other transitions. Assume also that the CT’s are independent. Then
the overall cell cycle time distribution may be approximated by the EME distribution
capturing both the relatively rapid transitions and the slow transition (see [9]). Using
the density convolution formula, for the density of (6), it is not difficult to obtain

fEME (x) = λ

w
e−λx/w

(
w

w − 1

)n [
1 − �(n, (w − 1)λx/w

(n − 1)!
]

,

where �(n, t) = ∫ ∞
t un−1e−u du is the complementary incomplete gamma function.

In Sect. 2, we present some auxiliary results. We prove the Theorem in Sect. 3. The
last section includes some concluding remarks.

2 Auxiliary Results

Due to the independence assumption, the LT of (6) equals �(wt)�n(t). If � is given
by (3), then �(wt)�n(t) is a product of linear fractions and we can decompose it into
sum of the Laplace transforms of wX and X . Denote

�1(t) := (w − 1)�(wt) and �2(t) := w − 1

w
�(t). (9)

Lemma 1 The following identity holds

�1(t)�
n
2(t) = �1(t) −

n∑

k=1

�k
2(t). (10)

Proof Without loss of generality, assume that X ∼ Exp(1). Note that the following
linear fraction decomposition holds

w − 1

(1 + wt)(1 + t)
= w

1 + wt
− 1

1 + t
. (11)

Recalling that �(t) = (1 + t)−1, notation (9), and multiplying both sides of (11) by
(w − 1)/w, we obtain

�1(t)�2(t) = �1(t) − �2(t).

This proves (10) for n = 1. Assuming that (10) holds for n, for the (n + 1) th term we
have that

�1(t)�
n
2(t)�2(t) =

[
�1(t) −

n∑

k=1

�k
2(t)

]
�2(t)
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= �1(t)�2(t) −
n∑

k=1

�k+1
2 (t)

= �1(t) − �2(t) −
n+1∑

k=2

�k
2(t)

= �1(t) −
n+1∑

k=1

�k
2(t),

which proves (10) for any n.

Lemma 2 Let n be any positive integer and v �= 1 be a real number.

(i) For any integer j ≥ 1

v

n−1∑

k=0

(
k

j − 1

)
vk + (v − 1)

n−1∑

k=0

(
k

j

)
vk =

(
n

j

)
vn . (12)

(ii) For any integer j ≥ 2

(
v

v − 1

) j−1

v

n−1∑

k=0

vk + (v − 1)
n−1∑

k=0

kvk �= nvn . (13)

Proof .

(i) The left-hand side of (12) is equivalent to

n−1∑

k=0

(
k

j − 1

)
vk+1 + (v − 1)

n−1∑

k=0

(
k

j

)
vk

=
n−1∑

k=0

[(
k

j − 1

)
+

(
k

j

)]
vk+1 −

n−1∑

k=0

(
k

j

)
vk

=
n−1∑

k=0

(
k + 1

j

)
vk+1 −

n−1∑

k=0

(
k

j

)
vk

=
n∑

k=1

(
k

j

)
vk −

n−1∑

k=1

(
k

j

)
vk =

(
n

j

)
vn .

(ii) Using (12) with j = 1, for the left-hand side of (13), we obtain

(
v

v − 1

) j−1

v

n−1∑

k=0

vk − v

n−1∑

k=0

vk + v

n−1∑

k=0

vk + (v − 1)
n−1∑

k=0

kvk
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=
[(

v

v − 1

) j−1

− 1

]
v

n−1∑

k=0

vk + nvn

=
[(

v

v − 1

) j

− v

v − 1

]
(vn − 1) + nvn �= nvn .

Remark It is not difficult to see that (12) can be generalized to

v

n−1∑

k=0

(
k + m

j − 1

)
vk + (v − 1)

n−1∑

k=0

(
k + m

j

)
vk =

(
n + m

j

)
vn, (14)

where m is any nonnegative integer.

3 Proof of the Theorem

It follows from Lemma 1 that if X ∼ Exp(λ), then (10) holds true. We will proceed
with the proof of the opposite direction in the claim. The case where n = 1 is a
particular case of (4) included in [6]. Let n ≥ 2. Consider the function � with the
following series expansion

�(t) := 1

�(t)
=

∞∑

j=0

a j t
j , t > 0. (15)

Note that, as a consequence of Cramér’s condition, the above series is uniformly
convergent in a proper neighborhood of t = 0 (see [11], p.240). To prove the theorem,
it is sufficient to show that for some λ > 0

�(t) = 1 + λ−1t,

i.e., the coefficients of the series in (15) are

a0 = 1, a1 = λ−1 > 0, a j = 0, j ≥ 2. (16)

Clearly,
a0 = �(0) = 1. (17)

It follows from (9) and (10) that

(w − 1)n+1

wn
�(wt)�n(t) = (w − 1)�(wt) −

n∑

k=1

(
w − 1

w

)k

�k(t). (18)
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Dividing both sides of (18) by its left-hand side and changing the summation index,
we obtain

1 = vn�n(t) − (v − 1)�(wt)
n−1∑

k=0

vk�k(t), (19)

where, for notational simplicity, we set v = w/(w − 1). To calculate the coefficients
a j for j ≥ 1, we differentiate both sides of (19) with respect to t at t = 0. After
differentiating once at t = 0, we have

[
nvn − v

n−1∑

k=0

vk − (v − 1)
n−1∑

k=0

kvk
]
a1 = 0.

It follows from (12) with j = 1 that the coefficient in front of a1 equals zero, and thus,
there exists a λ > 0 such that

a1 = λ−1. (20)

Differentiating (19) twice with respect to t at t = 0, we have

[(
n

2

)
vn − v

n−1∑

k=0

(
k

1

)
vk − (v − 1)

n−1∑

k=0

(
k

2

)
vk

]
a21

+
[
nvn −

(
v

v − 1

)
v

n−1∑

k=0

vk + (v − 1)
n−1∑

k=0

kvk
]
a2 = 0.

Lemma 2 with j = 2 yields that the coefficient in front of a21 is zero and the coefficient
in front of a2 is not zero. Therefore,

a2 = 0. (21)

It remains to prove that a j = 0 for all j ≥ 3. We will need the general Leibniz
rule for differentiating a product of functions. Denote by y( j)(x) the j th derivative of
y(x); y(0)(x) := y(x). Define a multi-index set ααα = (α1, α2, . . . , αn) as a n-tuple of
nonnegative integers. Denote ‖ααα‖ = α1 + α2 + · · · + αn and 	 j := {ααα : ‖ααα‖ = j}.
The j th derivative (when exists) of the product y1(t)y2(t) · · · yn(t) is given by (e.g.,
[17])

d j

dt j

n∏

i=1

yi (t) =
∑

	 j

(
j !

α1!α2! · · · αn !
n∏

i=1

y(αi )
i (t)

)
. (22)

Let us write 	 j as union of three disjoint subsets as follows:

	 j = 	′
j ∪ 	′′

j ∪ 	′′′
j ,

where

	′
j = {‖ααα‖ = j : only one of {α1, α2, . . . , αn} equals j (others are zeros)}
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	′′
j = {‖ααα‖ = j : exactly j of {α1, α2, . . . , αn} equal 1 (others are zeros)}

	′′′
j = {‖ααα‖ = j : there is an index αi with 2 ≤ αi < j}.

Notice that by definition, 	′′
j is not empty only if j ≤ n.

We will proceed by induction with respect to the index j ≥ 2 of a j . For j = 2, we
have already proved that a2 = 0. Assuming ai = 0 for 2 ≤ i ≤ j − 1, we will show
that a j = 0. Since a0 = 1, applying (22), we obtain

1

j !
d j

dt j
�n(t)|t=0 =

∑

	 j

(
n∏

i=1

aαi

)
=

∑

	′
j

(·) +
∑

	′′
j

(·) +
∑

	′′′
j

(·)

=
(
n

1

)
a ja

n−1
0 +

(
n

j

)
a j
1a

n− j
0

= na j +
(
n

j

)
a j
1 .

Notice that
∑

	′′′
j
(·) = 0 by the induction assumption. Also,

1

j !
d j

dt j
�(wt)�k(t)|t=0 =

∑

	 j

(
wαk+1aαk+1

k∏

i=1

aαi

)
=

∑

	′
(·) +

∑

	′′
(·) +

∑

	′′′
(·)

=
[
w j ak0a j +

(
k

1

)
a ja

k−1
0 a0

]
+

[(
k

j − 1

)
a j−1
1 ak− j+1

0 wa1 +
(
k

j

)
a j
1a

k− j
0 a0

]

=
[(

k

j − 1

)
w +

(
k

j

)]
a j
1 +

(
w j + k

)
a j .

Therefore, differentiating (19) j times at t = 0 and grouping the coefficients in front
of a j

1 and a j , we write

[(
n

j

)
vn − v

n−1∑

k=0

(
k

j − 1

)
vk + (v − 1)

n−1∑

k=0

(
k

j

)
vk

]
a j
1

+
[
nvn −

(
v

v − 1

) j−1

v

n−1∑

k=0

vk − (v − 1)
n−1∑

k=0

kvk
]
a j = 0.

It then follows from Lemma 2 that the coefficient in front of a j
1 is zero and the

coefficient in front of a j is not zero. Therefore, for all j ≥ 2

a j = 0. (23)

Now, (17), (20), (21) and (23) lead to (16), which completes the proof.
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4 Concluding Remarks

In this paper, we continue the study of the relation between the exponential and
hypoexponential distributions, initiated in [5] and extended in [6]. The obtained char-
acterization complements those in the above papers. Here we deal with a situation
where the rate parameters λi ’s in a convolution of exponential variables are not all
different from each other. The obtained result is of interest itself; however, it can also
serve as a basis for further investigations of more complex compositions of the rate
parameters.

The exponential distribution is well known as a lifetime model in reliability theory.
In particular, its use as a probability model for failure times of system’s components
is well justified. Thus, it is important to assess goodness-of-fit of the exponential
distribution for a data set prior to applying the exponential model. Characterization
results often serve as a useful device in obtaining goodness-of-fit tests. The presented
here characterization can be used for testing the validity of a model based on the
exponential distribution.
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