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Abstract

We characterize probability distributions via equalities in law between two order

statistics shifted by independent exponential variables. An explicit formula for the

quintile function of the identified family of distributions is obtained. The results extend

some known characterizations of exponential and logistic distributions.
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1. Introduction

Distributional (in law) relations between order statistics are useful and elegant tools for

characterizing probability distributions. More specifically, there is a large number of pub-

lications on characterizations based on recurrences involving both order statistics and stan-

dard exponential variables. An excellent review and discussion of the available results on

this subject can be found in [3].

AlZaid and Ahsanullah [2] showed that a non-negative random variable X with an ab-

solutely continuous cumulative distribution function (cdf) has standard exponential distri-

bution iff for a fixed k, such that 1 ≤ k ≤ n−1,

Xk,n +
ξ

n−k

d
= Xk+1,n, (1)

where X1,n,X2,n, . . . ,Xn,n are the order statistics in a sample with parent X and ξ is standard

exponential and independent from Xk,n. Please, see also [9] and [7] for an alternative proof

and some extensions in the context of random contractions (cf. [6, p. 14]). On the other

hand, it was shown in Ahsanullah et al. [1], under some additional regularity assumptions,

that a random variable X with absolutely continuous cdf is standard logistic if and only if

for a fixed k such that 1 ≤ k ≤ n−1,

Xk,n +
ξ1

n−k

d
= Xk+1,n−

ξ2

k
, (2)

where ξ1 and ξ2 are independent standard exponential variables, which are also independent

from Xk,n and Xk+1,n, respectively.
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First, we will study some extensions of the distributional relations (1) and (2) involving

order statistics shifted by independent exponential random variables. What can be said

about the distribution of the parent variable X if the following more general distributional

equality holds

Xk,n +aξ1
d
= Xr,n −bξ2, a ≥ 0, b ≥ 0, 1 ≤ k < r ≤ n, (3)

where ξ1 and ξ2 are independent standard exponential variables, which are also independent

from Xk,n and Xr,n, respectively?

Our first result answers the above question in the case of adjacent order statistics, i.e.,

when r = k + 1. Throughout this paper we will use the term Q(y) to refer to the pseudo-

inverse (quintile) function of F(x), i.e., Q(y) = inf{x : F(x) ≥ y} for y ∈ (0,1).

Theorem 1 Let k be a fixed integer such that 1 ≤ k ≤ n−1 and a ≥ 0 and b ≥ 0 be two

fixed real numbers such that (a,b) 6= (0,0). Assume X is a random variable with continuous

cdf F(x) and ξ1 and ξ2 are independent standard exponential variables, which are also

independent from Xk,n and Xk+1,n, respectively. Then

Xk,n +aξ1
d
= Xk+1,n−bξ2 (4)

holds if and only if the quintile function Q(x) satisfies

Q(x) = log
{

cxbk(1−x)−a(n−k)
}

, 0 < x < 1, (5)

where c > 0 is an arbitrary constant.

Remarks The following particular cases of (4) and (5) might be of independent interest.

(i) Setting a = 1/(n− k) and b = 0 in (5), we obtain F(x) = 1− e−(x−c) for x ≥ c, i.e.,

an exponential cdf.

(ii) If a = 0 and b = 1 we have F(x) = exp{x−c} for −∞ < x ≤ c.

(iii) If bk = a(n−k), then (5) yields the logistic cdf (cf. [5, p. 114])

F(x) =
c1

c1 +exp{−x}
, −∞ < x < ∞, c1 > 0.

(iv) If n = 2k and a = b 6= 0, then Theorem 1 implies

Xk,2k +aξ1
d
= Xk+1,2k−aξ2 iff F(x) =

1

1+c2 exp{−x/k}
, c2 > 0.

The next result addresses the case when (3) involves non-adjacent (two spacings away)

order statistics.

Theorem 2 Let k be a fixed integer such that 1 ≤ k ≤ n−2 and a ≥ 0 and b ≥ 0 be two

fixed real numbers such that (a,b) 6= (0,0). Assume X is a random variable with continuous
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cdf F(x) and ξ1 and ξ2 are independent standard exponential variables, which are also

independent from Xk,n and Xk+2,n, respectively. Then

Xk,n +aξ1
d
= Xk+2,n−bξ2 (6)

holds if and only if the quintile function Q(x) satisfies

Q(x) = log
{

cxbk(1−x)−a(n−k−1)
}

−W (x;k,n), 0 < x < 1, (7)

where c > 0 is an arbitrary constant and

W(x;k,n) =











d log{(n−2k +1)x+k +1}

n−2k +1
, if n 6= 2k +1;

(a+b)kx, if n = 2k +1,

(8)

where d = bk(n−k)+a(n−k−1)(k +1).

Remark Note that if n = 2k +1 and a = b = 1/k, then Theorem 2 implies

Xk,2k+1+
ξ1

k

d
= Xk+2,2k+1−

ξ2

k
iff Q(x) = log

{

cx

1−x

}

−2x.

A number of characterizations of the logistic distribution use distributional relations

between X and order statistics with positive and negative exponential random shifts. George

and Mudholkar [4] (see also [8]) proved that X is standard logistic if and only if

X
d
= X1,2 +ξ or X

d
= X2,2 −ξ.

More generally, Lin and Hu [8] established that, under some smoothness conditions, X is

standard logistic if and only if

X
d
= X1,n +

n−1

∑
j=1

ξ j

j
,

where ξ j for j = 1,2, . . .,n−1 are independent standard exponential variables, which are

also independent from X1,n. Ahsanullah et al. [1] proved that the standard logistic distribu-

tion is characterized by the following distributional equality holding for a fixed k, such that

1 ≤ k ≤ n−1,

X
d
= X1,n +

n−k

∑
j=1

ξ1( j)

j
−

k−1

∑
j=1

ξ2( j)

j
,

where X1,n, ξ1( j), and ξ2( j) for j = 1,2, . . .,n−1 are mutually independent and all ξ’s are

standard exponential. Finally, Zykov and Nevzorov [10] obtained characterizations based

on either

X
d
= Xn,n −ξ or X +ξ

d
= Xn,n. (9)

Exploring the so-called Fα-scheme (cf. [6, Lecture 25]), we will study characterizations

of logistic and related distributions based on one extension of (9).
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Theorem 3 Let a ≥ 0 and b ≥ 0 be two fixed real numbers such that (a,b) 6= (0,0) and

F(x) be a continuous distribution function. Suppose Y1 and Y2 are independent random

variables with distribution functions Fα(x) and Fβ(x), respectively for α > 0 and β > 0.

Furthermore, let ξ1 and ξ2 be independent standard exponential variables, which are also

independent from Y1 and max{Y1,Y2}, respectively. Then

Y1 +aξ1
d
= max{Y1,Y2}−bξ2 (10)

holds if and only if the quintile function Q(x) satisfies

Q(x) = log
{

cxbα(1−xβ)−d
}

, 0 < x < 1, (11)

where c > 0 is an arbitrary constant and d = [a(α+β)+bα]/β.

Remarks

(i) Setting a = 1 and b = 0 in (10), yields the cdf

F(x) =

(

1−exp

{

−
β

α+β
(x−c)

})1/β

, c ≤ x < ∞.

(ii) If bα = β and d = 1, then (11) is the quintile function of the Type I generalized

logistic cdf (cf. [5, p. 140])

F(x) =

(

c2

c2 +exp{−x}

)1/β

, −∞ < x < ∞, c2 > 0.

The special case of Theorem 3 when α = 1 and β = n−1 is particularly noteworthy.

Corollary Let a ≥ 0 and b ≥ 0 be two real numbers such that (a,b) 6= (0,0). Assume X

is a random variable with continuous cdf F(x) and ξ1 and ξ2 are independent standard

exponential variables, which are also independent from X and Xn,n, respectively. Then

X +aξ1
d
= Xn,n−bξ2, n ≥ 2, (12)

holds if and only if the quintile function Q(x) satisfies

Q(x) = log
{

cxb(1−xn−1)−d
}

, 0 < x < 1, (13)

where c > 0 is an arbitrary constant and d = (b+na)/(n−1).

The rest of the paper is organized as follows. In Section 2, we present an auxiliary result

before proving Theorem 1. Section 3 deals with the case of non-adjacent order statistics.

The proof of Theorem 3 is given in Section 4. We summarize the findings and discuss

potential future work in the last section.
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2. Adjacent Order Statistics

Let Z1 and Z2 be two random variables with continuous distribution functions G and H,

respectively. Let ξ1 and ξ2 be independent standard exponential variables, which are also

independent from Z1 and Z2, respectively.

Lemma Let a and b be two real numbers such that (a,b) 6= (0,0). Then

Z1 +aξ1
d
= Z2 −bξ2, (14)

if and only if

bG′(x)+aH ′(x) = G(x)−H(x). (15)

Proof Let us first prove that (14) implies (15). Assume both a 6= 0 and b 6= 0. It is not

difficult to see that (14) is equivalent to

1

a

x
Z

−∞

G(u)exp

{

u−x

a

}

du =
1

b

∞
Z

x

H(u)exp

{

x−u

b

}

du,

which, in turn, implies

b

x
Z

−∞

G(u)exp
{u

a

}

du = aexp

{

(a+b)x

ab

}
∞

Z

x

H(u)exp
{

−
u

b

}

du.

Since G and H are continuous, we can differentiate with respect to x both sides of the above

equation and obtain

exp
{

−
x

b

}

[bG(x)+aH(x)] =
a+b

b

∞
Z

x

H(u)exp
{

−
u

b

}

du.

Differentiating with respect to x again (using the continuity of H(x)) we obtain (15). The

proof when exactly one of a and b equals zero is similar and is omitted.

To prove that (15) implies (14), one needs to follow the steps in the above proof in

reverse order. The proof of the lemma is complete.

Further on we denote Fi,n(x) = P(Xi,n ≤ x) for 1 ≤ i ≤ n. Recall that

Fi,n(x) =
n

∑
j=i

(

n

j

)

F j(x)(1−F(x))n− j, 1 ≤ i ≤ n. (16)

Proof of Theorem 1 First, we will prove that (4) implies (5). Assume both a 6= 0 and b 6= 0.

It follows from Lemma with G(x) = Fk,n(x) and H(x) = Fk+1,n(x), making use of (16), that

bF ′
k,n(x)+aF ′

k+1,n(x) = Fk,n(x)−Fk+1,n(x)

=

(

n

k

)

Fk(x)(1−F(x))n−k. (17)
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On the other hand, for the left-hand side of (17), using again (16), we obtain

bF ′
k,n(x)+aF ′

k+1,n(x)

= (a+b)
d

dx

[

n

∑
j=k+1

(

n

j

)

F j(x)(1−F(x))n− j

]

+b
d

dx

[(

n

k

)

Fk(x)(1−F(x))n−k

]

= (a+b)n

(

n−1

k

)

Fk(x)(1−F(x))n−k−1F ′(x)

+bnFk−1(x)(1−F(x))n−k−1F ′(x)

[(

n−1

k−1

)

(1−F(x))−

(

n−1

k

)

F(x)

]

= an

(

n−1

k

)

Fk(x)(1−F(x))n−k−1F ′(x)+bn

(

n−1

k−1

)

Fk−1(x)(1−F(x))n−kF ′(x)

=

(

n

k

)

Fk−1(x)(1−F(x))n−k−1F ′(x) [a(n−k)F(x)+bk(1−F(x))] . (18)

Equating the right-hand sides of (17) and (18), and dividing throughout by
(

n
k

)

Fk(x)(1−

F(x))n−k

6= 0, we obtain

bk
F ′(x)

F(x)
+a(n−k)

F ′(x)

1−F(x)
= 1,

which, upon integration with respect to x, yields

log
{

Fbk(x)(1−F(x))−a(n−k)
}

= x−c, (19)

for an arbitrary constant c > 0. Finally, replacing x with Q(x) in the last equation, we obtain

(5). The proof for the cases when either a or b is zero is similar and is omitted here.

To prove the “if” part of the theorem, i.e., (5) implies (4), one needs to start with (19)

and repeat the steps of the above proof going backwards to (17).

3. Non-Adjacent Order Statistics

In the beginning we will prove that (6) yields (7). Assume both a 6= 0 and b 6= 0. Referring

to (16), we have

Fk,n(x)−Fk+2,n(x)

=

(

n

k

)

Fk(x)(1−F(x))n−k +

(

n

k +1

)

Fk+1(x)(1−F(x))n−k−1. (20)

On the other hand, similarly to (18), we obtain

bF ′
k,n(x)+aF ′

k+2,n(x) = bk

(

n

k

)

Fk−1(x)(1−F(x))n−kF ′(x)

+ a(n−k−1)

(

n

k +1

)

Fk+1(x)(1−F(x))n−k−2F ′(x). (21)



Characterizations of Distributions via Order Statistics... 303

Lemma with G(x) = Fk,n(x) and H(x) = Fk+2,n(x) implies that the left-hand sides of (20)

and (21) are equal. Equating the right-hand sides of these equations, it is not difficult to see

that

F ′(x) =
(k +1)F(x)(1−F(x))2 +(n−k)F 2(x)(1−F(x))

bk(k +1)(1−F(x))2 +a(n−k−1)(n−k)F 2(x)
.

Replacing x with Q(x) and using that F ′(Q(x)) = 1/Q′(x), we obtain

Q′(x) =
a(n−k−1)(n−k)x2 +bk(k +1)(1−x)2

x(1−x)(k +1+(n−2k−1)x)
. (22)

If n 6= 2k +1, then (22) can be written as

Q′(x) =
a(n−k−1)

1−x
+

bk

x
−

a(n−k−1)(k +1)+bk(n−k)

k +1+(n−2k−1)x
. (23)

After integrating with respect to x we obtain (7) with the upper branch of (8). In the case

n = 2k +1, (22) becomes

Q′(x) =
ak

1−x
+

bk

x
− (a+b)k (24)

and (7) follows after integrating with respect to x again. The proof when exactly one of a

and b equals zero is omitted.

Starting with (23) and (24) and following the steps of the above proof going backwards,

one can verify that (7) yields (6).

4. Fα Scheme

Let us first prove that (10) implies (11). Assume a 6= 0 and b 6= 0. Furthermore, assume

β = 1. It follows from Lemma with G(x) = Fα(x) and H(x) = Fα+1(x) that

bαFα−1(x)F ′(x)+a(α+1)Fα(x)F ′(x) = Fα(x)−Fα+1(x),

which, upon division by Fα−1(x) 6= 0, becomes

F ′(x) [bα+a(α+1)F(x)] = F(x)(1−F(x)).

This, for F(x)(1−F(x)) 6= 0, can be written as

1

F ′(x)
=

bα

F(x)
+

(a+b)α+a

1−F(x)
.

Replacing x with the quintile function Q(x), we obtain

Q′(x) =
bα

x
+

(a+b)α+a

1−x
.

Integrating both sides with respect to x, we have

Q(x) = log
{

cxbα(1−x)−(a+b)α−a
}

, (25)
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where c > 0 is an arbitrary constant. This completes the proof when β = 1. To extend this

proof to the general case β > 0, consider the independent random variables Y ′
1 and Y ′

2 with

cdf’s (H(x))α/β and H(x), respectively, where H(xβ) = F(x). It follows from (25) that the

quintile function H−1(x) satisfies

H−1(x) = log
{

cxbα/β(1−x)−(a+b)α/β−a
}

. (26)

Now, taking into account that Q(x) = H−1(xβ), we see that (26) yields (11). The proof of

the cases when either a or b is zero is omitted.

It is not difficult to verify that (11) implies (10), following the steps of the above proof

in reverse order.

5. Concluding Remarks

We obtained characterizations based on distributional equalities between two order statistics

plus or minus multiples of independent standard exponential variables. The resulting family

of distributions includes as its members exponential, logistic, and generalized logistic. In

case of adjacent order statistics, the quintile function of the underlying distribution takes on

a compact explicit form. If the order statistics are two spacings away, the expression for the

quintile function includes an additional additive term, which is linear if the order statistics

are on both sides of the median. Further calculations show that if higher-order spacings are

involved then the resulting quintile function will have more additive terms.

Exploring the so called Fα-scheme, we studied the distribution of a continuous X for

which X plus a multiple of a standard exponential variable equals the maximum order statis-

tic minus a multiple of another standard exponential variable. The obtained results general-

ize those of Zykov and Nevzorov (2010).

One area of future work will be to study in more detail the distributions with quintile

functions (5), (7), and (11). It also remains to be seen what the distribution of X is if

the corresponding order statistics differ by a linear combination of standard exponential

variables. Some results in this direction are given in Ahsanullah et al. [1].
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