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Abstract Lower and upper bounds for the cumulative distribution function (cdf)
of the time to extinction in a subcritical two-sex branching process are derived.
A recursive procedure for approximating this cdf is also utilized. The results are
illustrated with some simulations.
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1 Introduction

There exists a significant literature regarding extinction probabilities in bisexual
Galton-Watson branching processes (BGWP). A detailed introduction to the BGWP
model and the physical properties associated with its variables can be found in Hull
(2003) and Molina (2010). Necessary and sufficient conditions for certain extinction
have been known for over 25 years. This raises the question—“If extinction is certain,
when will it occur?”. Here we make the first attempt to give a meaningful response
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to this question. Daley et al. (1986), Lemma 4.3, introduced the concept of “stopping
time” in the context of two-sex processes. A version of stopping time is used in
the present work. Our approach will be to apply known results concerning time-
to-extinction in the standard Galton-Watson branching process to estimate time-to-
extinction probabilities in the two-sex process. Our intent is to produce the first paper
on time-to-extinction for the two-sex model and thus lay a foundation for future
research efforts on this subject.

Let {( fn, j,mn, j) : n ≥ 0; j ≥ 1} be a sequence of integer-valued i.i.d. bivariate
random variables. A BGWP {Zn}n≥0 is defined by the recursion:

Z0 = i ≥ 1,

Zn = ζ

⎛
⎝

Zn−1∑
j=1

fn, j,

Zn−1∑
j=1

mn, j

⎞
⎠ , n ≥ 1, (1)

where ζ(x, y) is a deterministic mating function. We assume

(A1) ζ(x, y) is superadditive, i.e., for any x1, x2, y1 and y2 ∈ [0, ∞)

ζ(x1 + x2, y1 + y2) ≥ ζ(x1, y1) + ζ(x2, y2),

(A2) ζ(x, y) ≤ x.

Both hypotheses are natural, at least from a population dynamics outlook. For an
intuitive interpretation of assumption (A1), think of a two-sex population where all
of the males and females are able to communicate and interact with one another
without class distinctions. Superadditivity implies that the number of mating units in
that scenario will not be smaller than in a scenario where the population is partitioned
into a number of non-communicating groups and the mating takes place in each of
these groups separately. The assumption (A2) reflects the fact that in many human
and animal populations a female is allowed only one mate while a male may mate
with several females. While this is not universally true, it is a common practice due
to male dominance and the greater effort that females generally must make in the
reproduction process. Notice also that the equality ζ(x, y) = x in assumption (A2)
yields the standard asexual Galton-Watson process.

Daley (1968) suggested two mating functions relevant to human and animal
mating. He called the first completely promiscuous mating, ζ(x, y) = xmin{1, y},
where x is the number of females and y is the number of males in a given generation.
In this case a championmale arises in each generation and has the capabilities to mate
with every female in that generation. All other males are not allowed to mate. The
othermating function is polygamousmating with perfect f idelity, ζ(x, y) = min{x, ky},
where k is a positive integer. It is assumed that each individual will mate if a mate
is available. Females may have no more than one mate and males may have up to
k mates. Both mating functions, as well as most mating functions considered in the
literature, satisfy (A1) and (A2).

Let T := min{n ≥ 1 : Zn = 0} be the time-to-extinction in a BGWP. That is, T
counts the number of generations up to and including the generation in which
extinction (absorption at zero) occurs. Let us call Ta the time to extinction in
the standard (asexual) Galton-Watson process with i ≥ 1 ancestors. Due to the
independence of lines of descent (additive property, Athreya and Kaplan 1978), we
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have Ta = max1≤ j≤i T
( j)
a , where T( j)

a is the time to extinction of the line of descent
of the jth ancestor. Denote Pi(·) := P(· | i ancestors). Since T( j)

a , 1 ≤ j ≤ i, are
independent and identically distributed, we have Pi(Ta ≤ n) = [P1(Ta ≤ n)]i. The
presence of mating in the BGWP complicates the analysis. In particular, the additive
property does not hold true. As a result some properties of Ta do not carry over to T.
For instance, as a direct consequence of Theorem 3 in González and Molina (1997),
we have Pi(T ≤ n) ≤ [P1(T ≤ n)]i for i ≥ 1 and n ≥ 0.

Define the mean growth rates ri := i−1E[Zn+1|Zn = i] for i ≥ 1. For an asexual
process with offspring mean μ, ri = μ for all i. It is well-known that Pi(Ta < ∞) = 1
if and only if μ ≤ 1. In contrast, a BGWP does not have a clear genealogical tree
and the changes in the population size depend on both reproduction and formation
of couples (mating units). Daley et al. (1986) showed that, assuming superadditivity,
Pi(T < ∞) = 1 for any i ≥ 1 if and only if r := supi≥1 ri ≤ 1. Hence, we call a BGWP
subcritical, critical, and supercritical when r < 1, r = 1, and r > 1, respectively.

Our goal is to find upper and lower bounds for Pi(T ≤ n) and Ei[T] := E[T|Z0 = i]
in the subcritical case (r < 1). In Section 2 we utilize two standard processes for
estimating Pi(T ≤ n) and derive inequalities for the expected value of T. Section 3
presents an alternative recursive algorithm for calculating upper and lower bounds of
Pi(T ≤ n). In Section 4, our results are illustrated with one example and simulations.
Finally, the last section summarizes the paper’s findings and lists some topics for
further consideration.

2 Asexual Process Bounds

Define a females generate females asexual process (FGFP) {Fn}n≥0 by:

F0 = i ≥ 1

Fn =
Fn−1∑
j=1

fn, j, n ≥ 1. (2)

Assuming (A2), it is not difficult to prove by induction that for every n ≥ 0

Zn ≤ Fn. (3)

Indeed, Z0 = i = F0 by definition and for n ≥ 1, we have

Zn = ζ

⎛
⎝

Zn−1∑
j=1

fn, j,

Zn−1∑
j=1

mn, j

⎞
⎠ ≤

Zn−1∑
j=1

fn, j ≤
Fn−1∑
j=1

fn, j = Fn,

where the last inequality follows by the induction hypothesis.

Remark For a more intuitive argument supporting Eq. 3, note that in any realization
of BGWP (Eq. 1) and FGFP (Eq. 2), the number of reproducing females in the latter
will not be smaller than the number of reproducing mating units in the former.
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If μ f := E[ f1,1], then inequality (A2) implies

μ f = 1
i
E

⎡
⎣

i∑
j=1

fn+1, j

⎤
⎦ ≥ 1

i
E

⎡
⎣ζ

⎛
⎝

i∑
j=1

fn+1, j,

i∑
j=1

mn+1, j

⎞
⎠

⎤
⎦ = ri.

Therefore,

r = sup
i≥1

ri ≤ μ f . (4)

Define a second asexual process {Sn}n≥1 by the recursion:

S0 = i ≥ 1,

Sn =
Sn−1∑
j=1

hn, j, n ≥ 1, (5)

with hn, j = ζ( fn, j,mn, j). Assuming superadditivity of ζ(x, y), one can prove that for
all n ≥ 0

Zn ≥ Sn. (6)

Indeed, S0 = i = Z0 and assuming Zn−1 ≥ Sn−1 for n ≥ 1, we have

Zn = ζ

⎛
⎝

Zn−1∑
j=1

fn, j,

Zn−1∑
j=1

mn, j

⎞
⎠ ≥

Zn−1∑
j=1

ζ
(
fn, j,mn, j

) ≥
Sn−1∑
j=1

ζ
(
fn, j,mn, j

) = Sn.

Remark The process (Eq. 5) can be also viewed as a BGWP with mating function
ζ(x, y) subject to the additional restriction that a male and a female may mate only
if they were generated by the same mating unit, i.e., are siblings. We call this siblings
mating only process (SMOP). The superadditivity assumption ensures that there will
not be an advantage (i.e., more mating units) if sibling-only mating is required. This
is reflected in inequality (6).

Denote μs := E[h1,1] = E[ζ( fn, j,mn, j)]. If ζ is superadditive, then

ri = 1
i
E

⎡
⎣ζ

⎛
⎝

i∑
j=1

fn, j,

i∑
j=1

mn, j

⎞
⎠

⎤
⎦ ≥ 1

i

i∑
j=1

E[ζ( fn, j,mn, j)] = μs.

Therefore,

r = sup
i≥1

ri ≥ μs. (7)

Given a BGWP, call the asexual processes {Fn} and {Sn} its “associated processes”.
Next we recall known (Agresti 1974, Theorem 1 and Haccou et al. 2005,

Theorem 5.3) inequalities for the cdf of the time-to-extinction in an asexual process.
For any standard process with offspring law {pk}k≥0, offspring mean 0 < μ < 1 and
offspring variance σ 2 < ∞ define

Qi(μ, p0) := 1 − 1 − μn

c1(1 − μ) + 1 − μn
δi,1,
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where c1 = max
{
2, μ(μ + p0 − 1)−1

}
and δ1,1 = 1; δi,1 = 0 for i �= 1. Define also

Q
i
(μ, σ 2) := c2

1 − (1 − c2)μn
− 1 − μn

1 − (1 − c2)μn

i − 1
2

,

where c2 = μ(1 − μ)σ−2. If μ < 1 and σ 2 < ∞, then

Q
i
(μ, σ 2)μn ≤ Pi(Ta > n) ≤ Qi(μ, p0)iμn, n ≥ 0. (8)

Denote p f,0 := P( f1,1 = 0).

Proposition 1 Assume (A1) and (A2). If μ f := E[ f1,1] < 1 and σ 2
s := Var[ζ( f1,1,

m1,1)] < ∞, then for i ≥ 1

Q
i
(μs, σ

2
s )μn

s ≤ Pi(T > n) ≤ Qi(μ f , p f,0)iμn
f , n ≥ 0, (9)

and

�i(n) := Qi(μ f , p f,0)iμn
f − Q

i
(μs, σ

2
s )μn

s = O
(
μn

f

)
, n → ∞. (10)

Proof Let TFGFP and TSMOP denote the times to extinction in FGFP and SMOP,
respectively. The inequalities (3) and (6) imply for all n ≥ 0

Pi(TSMOP > n) ≤ Pi(T > n) ≤ Pi(TFGFP > n). (11)

Applying Eq. 8 to Pi(TSMOP > n) and Pi(TFGFP > n), we obtain Eq. 9.
Since μs ≤ μ f and

�i(n) = μn
f

[
Qi(μ f , p f,0)i − Q

i
(μs, σ

2
s )

(
μs

μ f

)n]
,

taking into account that

lim
n→∞ Qi(μ f , p f,0) = 1 − δi,1

c1(1 − μ f ) + 1
and lim

n→∞ Q
i
(μs, σ

2
s ) = c2 − i − 1

2
,

where c1 = max
{
2, μ f (μ f + p f,0 − 1)−1

}
and c2 = μ(1 − μs)σ

−2
s , we obtain Eq. 10.

The proof is complete. �	

Remark The assumptions in Proposition 1 are common in the literature on two-
sex branching processes. We have already discussed (A1) and (A2) in Section 1.
Furthermore, small numbers of mating units and hence eventual extinction is
primarily caused by small numbers of females in the various generations. Small
numbers of males can also cause extinction but that can be dealt with by allow-
ing males to have multiple mates. Hence, the assumption that E[ f1,1] < 1. The
assumption σ 2

s < ∞ is needed to apply Agresti’s bound. Note that for specific
mating functions the last two hypotheses simplify as follows. If ζ(x, y) = min{x,ky}
then r = min{E[ f1,1], kE[m1,1]} and therefore E[ f1,1] < 1 implies r < 1. If ζ(x, y) =
xmin{1, y} then r = E[ f1,1]. Also, since ζ(x, y) ≤ x, E[ζ( f1,1,m1,1)

2] ≤ E[ f 21,1] and
therefore Var[ f1,1] < ∞ implies σ 2

s < ∞.
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Next we will find lower and upper bounds for the expected time to extinction,
Ei[T]. For the subcritical (μ < 1) asexual process (Haccou et al. 2005, Thm. 5.4)

(
ln i − ln ln i

| lnμ| − 1
) (

1 − 1
iba

)
≤ Ei[Ta] ≤ ln i

| lnμ| + 2 − μ

1 − μ
, (12)

where i ≥ 3 and ba ≥ (1 − μ)μ/σ 2, provided that the offspring variance σ 2 < ∞. The
following result holds true for a BGWP.

Proposition 2 Assume (A1), (A2), and σ 2
s := Var[ζ( f1,1,m1,1)] < ∞. If 0 < r < 1,

then for i ≥ 3
(
ln i − ln ln i

| lnμs| − 1
)(

1 − 1
ib s

)
≤ Ei[T] ≤ min

{
ln i

| ln r| + 2 − r
1 − r

,
i

1 − r

}
, (13)

where bs ≥ (1 − μs)μs/σ
2
s .

Proof Since Pi(T > n) = Pi(Zn ≥ 1) ≤ Ei[Zn] ≤ irn, we have

Ei[T] =
∞∑
n=0

Pi(T > n) ≤ i
∞∑
n=0

rn = i
1 − r

. (14)

On the other hand,

Ei[T] =
∞∑
n=0

Pi(T > n) (15)

≤
∑

0≤n<ln i/| ln r|
Pi(T > n) + i

∑
n≥ln i/| ln r|

rn

≤ ln i
| ln r| + 1 + irln i/| ln r|

1 − r

= ln i
| ln r| + 2 − r

1 − r
.

Equations 14 and 15 imply the upper bound in Eq. 13. Let us now find a lower bound
for Ei[T]. Recalling the SMOP and referring to Eqs. 7, 11, and 14 we obtain

Ei[T] =
∞∑
n=1

Pi(T > n) ≥
∞∑
n=1

Pi(TSMOP > n) = Ei[TSMOP], (16)

where TSMOP denote the time to extinction of SMOP (Eq. 5). Equation 16, in view of
Eq. 12, implies the left-hand side inequality in Eq. 13, which completes the proof. �	

Analytical Example Write ξ ∈ MG(b , c) when the random variable ξ follows the
modified geometric distribution with parameters b > 0 and c > 0 such that b + c ≤ 1
and probability mass function

P(ξ = k) = bck−1 for k = 1, 2, . . . ; P(ξ = 0) = 1 −
∞∑
k=1

P(ξ = k).
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Define a BGWP {Zn} with Z0 = 1 and for i, j ≥ 0

P( f1,1 = i,m1,1 = j) = P( f1,1 = i)P(m1,1 = j),

where f1,1 ∈ MG(b f , c f ) and m1,1, ∈ MG(bm, cm), i.e., the numbers of both female
and male offspring follow independent modified geometric distributions. Assume
also ζ(x, y) = xmin{1, y}. For the time to extinction of the associated FGFP we have
(e.g., Taylor and Karlin 1994, p. 457)

P(TFGFP > n) =
(

u f − 1
u f − μn

f

)
μn

f ,

whereμ f = b f /(1 − c f )
2 and u f := (1 − b f − c f )/(c f (1 − c f )) > 1 ifμ f < 1. On the

other hand, for the associated SMOP, P(h1,1 = 0) = 1 − P( f1,1 > 0)P(m1,1 > 0) and
P(h1,1 = k) = P( f1,1 = k)P(m1,1 > 0) for k = 1, 2, . . . It is not difficult to verify that
h1,1 ∈ MG(bs, c f ), where bs = b f bm/(1 − cm). Therefore,

P(TSOMP > n) =
(

us − 1
us − μn

s

)
μn
s =

(
us − 1
us − μn

s

)(
bm

1 − cm

)n

μn
f ,

where us := (1 − bs − c f )/(c f (1 − c f )) > 1 if μs < 1. Assuming μ f < 1, the inequal-
ities (11) become

μn
f

(
bm

1 − cm

)n (
us − 1
us − μn

s

)
≤ P1(T > n) ≤ μn

f

(
u f − 1
u f − μn

f

)
(17)

Note that the maximum error of estimating P1(T > n) is O(μn
f ) as n → ∞. Finally,

using Eq. 17 we obtain for μ f < 1
(
1 − 1

us

)
1

1 − μs
≤ E1[T] ≤ 1

1 − μ f
.

Remark The procedure for estimating Pi(T ≤ n) presented in this section can be
extended to the cases when the associated process {Fn} (and also {Sn}) is not
subcritical, i.e., μ f ≥ 1. If {Fn} is critical, then Eq. 8 can be replaced by the interval
formulas in Theorem 1 of Agresti (1974). When {Fn} (and maybe also {Sn}) is
supercritical, approximating intervals for the distribution of time-to-extinction can be
derived by using the duality between subcritical and supercritical asexual processes.
The theory behind this duality is discussed in Agresti (1974), see also Athreya and
Ney (1972), pp. 72–73. In particular, it is well-known that if Tsup

a and Tsub
a are

the times to extinction in a supercritical and its dual subcritical asexual process,
respectively, then a < P(Tsub

a < n) < b implies qa < P(Tsup
a < n) < qb , where q is

the extinction probability of the supercritical process with one individual in the initial
generation

3 Finite Markov Chain Approximations

The inequalities (9) are intended to be the basis of estimating a time-to-extinction
probability. If this approach lacks precision, i.e., the interval lengths for various
values of n are too wide, then one can use a recursive algorithm for approximating
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Pi(T ≤ n), which will be developed in this section. The procedure is based on two
finite-state Markov chains. For a fixed integer M ≥ i, let n(M) := min{n : Zn > M}.
For n ≥ 1 define

Z̃n =
{
Zn if n < n(M),

0 if n ≥ n(M),
and Ẑn =

{
Zn if n < n(M),

M if n ≥ n(M).

Note that {Ẑn} appeared in Daley et al. (1986).
Let T̃ and T̂ be the times to extinction for {Z̃n}n≥0 and {Ẑn}n≥0, respectively.

Define G̃i(n) := Pi(T̃ ≤ n), Ĝi(n) := Pi(T̂ ≤ n), and Gi(n) := Pi(T ≤ n). By the
definitions of {Z̃n} and {Ẑn}, we have for n ≥ 0

Pi(Ẑn = 0) ≤ Pi(Zn = 0) ≤ Pi(Z̃n = 0),

which is equivalent to

Ĝi(n) ≤ Gi(n) ≤ G̃i(n). (18)

Define Pij := P(Zn+1 = j|Zn = i) for nonnegative integers i, j, and n. The utility of
Eq. 18 is that it is not difficult to compute the bounds Ĝi(n) and G̃i(n) for any n ≥ 0
using the recurrences: Ĝi(0) = 0,

Ĝi(n) = Pi0 +
M∑
j=1

PijĜ j(n − 1) (19)

and G̃i(0) = 0,

G̃i(n) = Pi0 + Pi(Z1 > M) +
M∑
j=1

PijG̃ j(n − 1) (20)

= 1 −
M∑
j=1

Pij(1 − G̃ j(n − 1)).

The next result shows, in particular, that G̃i(n) − Ĝi(n) = O(1/M) as M → ∞.

Proposition 3 If 0 < r < 1, then for i ≥ 1 and n ≥ 2,

0 ≤ G̃i(n) − Gi(n) ≤ icn+1(r)
M

and 0 ≤ Gi(n) − Ĝi(n) ≤ icn(r)
M

, (21)

where cn(r) = (r − rn)/(1 − r).

Proof For the first inequality in Eq. 21, observe that

Pi(Z̃n = 0) = Pi

(
n⋃

k=1

{Zk = 0}
)

+ Pi

(
n⋃

k=1

{Zk > M}
)

≤ Pi(Zn = 0) +
n∑

k=1

Pi(Zk > M).
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Therefore,

G̃i(n) − Gi(n) ≤
n∑

k=1

Pi(Zk > M). (22)

In addition, since E[Zk|Zk−1] = Zk−1rZk−1 for a positive k, we have E[Zk] =
E[E[Zk|Zk−1]] = E[Zk−1rZk−1 ] ≤ rE[Zk−1], which after iterating implies

Ei[Zk] ≤ irk. (23)

The inequalities (22) and (23), along with the Markov inequality, yield

G̃i(n) − Gi(n) ≤
n∑

k=1

Pi(Zk > M) ≤ 1
M

n∑
k=1

Ei[Zk] ≤ i
M

n∑
k=1

rk. (24)

FromEqs. 18 and 24 we obtain the first part of Eq. 21. To prove the second inequality
in Eq. 21, we will first show by induction that

Gi(n) − Ĝi(n) ≤
n−1∑
k=1

Pi(Zk > M). (25)

The following recursion holds true

Gi(0) = 0,

Gi(n) = Pi0 +
∞∑
j=1

PijGj(n − 1), n ≥ 1. (26)

From Eq. 26, we have for n = 1 and M ≥ i,

Gi(2) = Pi0 +
M∑
j=1

PijGj(1) +
∞∑

j=M+1

PijGj(1)

≤ Ĝi(2) + Pi(Z1 > M),

which establishes Eq. 25 for n = 2. Assume Eq. 25 is true for a fixed n > 2. Then for
any M ≥ i,

Gi(n + 1) = Pi0 +
M∑
j=1

PijGj(n) +
∞∑

j=M+1

PijGj(n)

≤ Pi0 +
M∑
j=1

Pij

[
Ĝ j(n) +

n−1∑
k=1

Pj(Zk > M)

]
+ Pi(Z1 > M)

= Ĝi(n + 1) +
M∑
j=1

Pij

[
n−1∑
k=1

Pj(Zk > M)

]
+ Pi(Z1 > M)

≤ Ĝi(n + 1) +
n−1∑
k=1

∞∑
j=1

PijP j(Zk > M) + Pi(Z1 > M)
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= Ĝi(n + 1) +
n−1∑
k=1

Pi(Zk+1 > M) + Pi(Z1 > M)

= Ĝi(n + 1) +
n∑

k=1

Pi(Zk > M),

which completes the proof of Eq. 25. The second part of Eq. 21 follows from Eqs. 18
and 25 applying the Markov inequality as in Eq. 24. The proposition is proved. �	

4 Numerical Example

In this section we illustrate through an example the proposed approximation proce-
dures. Consider a BGWP with Z0 = i ≥ 1 and for 0 < α < 1

P( f1,1 = k,m1,1 = j) =
{ (3

k

)
αk(1 − α) j for k + j = 3, k, j ≥ 0,

0 otherwise.

Assume also a completely promiscuous mating function ζ(x, y) = xmin{1, y}. The
distribution of the number of females generated by a mating unit is p f

k := (3
k

)
αk(1 −

α)3−k, 0 ≤ k ≤ 3. It follows from Eq. 4 that the process is subcritical provided
E[ f1,1] = 3α < 1. We set α = 0.25.

To obtain asexual process bounds for Pi(T ≤ n), let us consider the associated
processes FGFP and SMOP defined by Eqs. 2 and 5, respectively, with offspring
pgf g(x) = (αx + 1 − α)3 and h(x) = 3α2(1 − α)x2 + 3α(1 − α)2x + α3 + (1 − α)3. If
fn(x) denotes the nth composition of a function f (x) with itself, then it is well-
known that

Pi(TFGFP ≤ n) = (gn(0))i and Pi(TSMOP ≤ n) = (hn(0))i. (27)

Table 1 lists GFGFP
i (n) := Pi(TFGFP ≤ n) and GSMOP

i (n) := Pi(TSMOP ≤ n) for α =
0.25 and selected values of i and n. Here we use the explicit formulas (27) instead
of the inequalities (8).

Next, we compute Ĝi(n) and G̃i(n) using the recurrences (19) and (20) with M =
20. The one-step transition probabilities Pij, j = 0, . . . M have been estimated by the
Monte Carlo method based on 10,000 simulations of Z1 when Z0 = i. The obtained

Table 1 Comparison between
GFGFP

i (n), G∗
i (n), and

GSMOP
i (n)

i n GFGFP
i (n) G∗

i (n) GSMOP
i (n)

2 2 0.392 0.400 0.421
5 0.759 0.773 0.801
7 0.868 0.880 0.902

10 0.945 0.952 0.966
5 2 0.096 0.098 0.115

5 0.503 0.513 0.575
7 0.702 0.714 0.774

10 0.869 0.879 0.912
10 2 0.009 0.009 0.013

5 0.253 0.259 0.330
7 0.492 0.503 0.598

10 0.755 0.767 0.842
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bounds for Pi(T ≤ n) agree up to the third decimal place for all i and n in Table 1,
where this common value is denoted as G∗

i (n).
The results of both estimating procedures described above are presented in

Table 1.

5 Concluding Remarks

It is our hope and expectation that this paper will provide a starting point and
motivation for further consideration of the time to extinction in both theoretical
context and applications to certain traits or characteristics of two-sex species. Such
may include, for instance, various genotypes of intermediate forms in the evolution
of a particular two-sex species.

To summarize, two kinds of bounds for the distribution function of T are derived.
The first is based on constructing ordinary branching processes which stochastically
bound the process specified by the number of mating units in each generation. The
(quite mild) moment assumptions give bounds for Pi(T > n) of order μn, where μ

is the per-capita mean number of offspring of the bounding processes. These means
differ, but the bounds show that the upper bounding mean is μ f , the mean number
of female offspring in the two-sex process, assumed less than unity. The bounds are
specified in terms of offspring means and variances, hence easy to compute and also
Pi(T > n) = O(μn

f ) as n → ∞.
The second pair of bounds is based on two sequences of finite-state Markov

chains obtained by stopping the two-sex branching process in two different ways.
The zero hitting times of these Markov chains bound the extinction time of the
two-sex process. Each sequence is indexed by a positive integer M, such that the
corresponding chain has state-space {0, 1, . . . , M}. An estimate of the error involved
with each bound is computed. It has a very simple form and is proportional to M−1.
Thus, M can be chosen to achieved a prescribed maximum error. These bounds
require numerical values of the one-step transition probabilities and much more
computation that the first ones. However, they can be made as tight as desired.

It would be more efficient to deal with probabilities involving T when the mating
function is further specified. For instance, the counter-example given in Hull (1982)
does not require estimates and P(T = n) can be calculated directly. Are there other
mating functions with this property? Also, Daley’s relevant mating functions should
be considered as separate projects when investigating probabilities of T. Are there
shortcuts when dealing with these specific mating functions?
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