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Characterizations of Logistic Distribution
Through Order Statistics with Independent
Exponential Shifts

Mohammad Ahsanullah, George P. Yanev and Constantin Onica

Abstract. Distributional properties of logistic order statistics subject to independent ex-
ponential one-sided and two-sided shifts are established. Utilizing these properties, we
extend several known results and obtain new characterizations of the logistic distribution.

Keywords. Characterizations, Logistic Distribution, Order Statistics, Exponential Shifts.

2010 Mathematics Subject Classification. 62G30, 62E10.

1 Discussion of Main Results

The standard logistic cumulative distribution function (c.d.f.) is given by

ex

L) =177

—00 < X < 00. €))]

The density curve resembles that of normal distribution with heavier tails (higher

kurtosis). The mean and variance are O and ”72, respectively. The logistic distri-
bution has an important place in both probability theory and statistics as a model
for population growth. It has been successfully applied to modeling in such di-
verse areas as demography, biology, epidemiology, environmental studies, psy-
chology, marketing, etc. Recent applications in economics include portfolio mod-
eling (Bowden [3]), approximation of the fill rate of inventory systems (Zhang and
Zhang [12]), and Hubbert models of production trends of various resources (Modis
[10D.

Characterizations of distributions is an active area of contemporary probabil-
ity theory. They reveal intrinsic properties of distributions as well as connections,
sometimes unexpected, between them. Within the abandon literature, there are sur-
prisingly few results about the logistic distribution (see the discussion in Galambos
[5] and Lin and Hu [9]). George and Mudolkar [6,7] were first to obtain character-
izations involving order statistics. Recently, Lin and Hu [9] generalized their re-
sults and derived new interesting ones. We extend some of George and Mudolkar’s
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86 M. Ahsanullah, G.P. Yanev and C. Onica

[6] and Lin and Hu’s [9] findings (Theorem 2 and the corollary) and obtain new
characterizations through order statistics with independent exponential shifts.

Let X1, X»,..., X, be independent copies of a random variable X with abso-
lutely continuous (with respect to the Lebesgue measure) cumulative distribution
function (c.d.f.) F. Denote the corresponding order statistics by X1, < X3, <

- < Xun. Let ¢ and Fy (suppressing the dependence on n) be the characteris—
tic function (ch.f.) and the c.d.f. of Xy , for 1 < k < n, respectively. Equality in
distribution is denoted by =. Let EJ/ and E J’f ,1 < j < n, be mutually independent
standard exponential random variables, which are also independent from X; for
1<i<n.

We characterize the logistic distribution by distribution equalities between order
statistics with random exponential shifts. Three cases are considered depending on
the relative positions of the order statistics: adjacent, two, and three spacings away.

Theorem 1. Suppose F is an absolutely continuous (with respect to the Lebesgue
measure) c.d.f. with F(0) = % Choose r to be 1, 2, or 3 and let k; for 1 <i <r
be distinct integers in [1,n — r]. Then F is standard logistic if and only if

(i) 1"k, (¢) and t" $y; 1, (1) are absolutely integrable for any t; and

(i) the following r equations hold true for k; € [l,n —r] where 1 <i <r:

ki+r—1 E/ ki+r—1 //
Xk,j-i-r,n - Z - = Xk, R/ + Z P ] (2)
j=k;

/
Next we extend the characterization X = X0+ Z J given in Lin and

Hu [9].

—IJ

Theorem 2. Let F' be absolutely continuous (with respect to the Lebesgue mea-
sure) and F(0) = % Assume

() the c.d.f Gx(x) = P(eX < x) is analytic and strictly increasing in [0, 00);
(1) the derivative G)((k) (x), k = 1, is strictly monotone in some interval [0, t,).

Choose an arbitrary but fixed k € {1,2,...,n—1}. Then F is standard logistic if

and only if
n— kE/ k— L pr

x4 xk,,+zjf Z -, 3)

J= J= j

where as usual Z;)zl(-) =0.
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Corollary 1. Under the assumptions of Theorem 2 for k > 2, F is standard logis-
tic if and only if
k—1
d
X £ Xepk-1+ ) Laj, )
j=1
where Laj for 1 < j < k — 1 are mutually independent Laplace random vari-

ables with density function fj(x) = j e_gxl for |x| < oo and independent from

Xk pk—1-

This extends George and Mudholkar’s [6] characterization X 4 Xo3+E i —Eé.

In Section 2 we derive two relations among logistic order statistics with inde-
pendent exponential shifts. In the following two sections we proof Theorem 1. The
proof of Theorem 2 is given in Section 5, followed by some concluding remarks.

2 Preliminaries

If F is absolutely continuous, then (Ahsanullah and Nevzorov [1, (1.1.2)])

n

Fl(x) = k(k) F¥1x) 1= Fx)" *F'(x), 1<k <n. 5)

Integrating (5) and iterating, one obtains the recurrence for 1 <r <n —k

k+r
n . .
Fr(x) = Z ( .)F’(X)(l —FO)"™ + Frqre1(x). (6)
j=k \J
Furthermore, the following inversion formula holds true for 1 < j < n:

o0

1 )
Fw = [ e g0an Feo=Feo =0 @)

—00

If ffooo |t~ 1 ()| dt < oo for m > 2, then the Dominated Convergence Theo-
rem implies that F (m_l)(x) is differentiable and thus for m > 2

_;ym—1 00 .
(i / ety (nde,  F™(c0) = F™ (~00) = 0.
2 —00 J J
®)

The following characterization property of the logistic distribution is well
known (Lin and Hu [9]). If F is absolutely continuous and

Fj(m)(x) —

F'(x) = F(x)(1 = F(x)), xe(Fp.rF), C))
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where [ = inf{x : F(x) > 0} and rp = sup{x : F(x) < 1}, then for some u

1

FO = oo

(10)

We end this section with relations for logistic order statistics with exponential
shifts.

Lemma 1. Under the assumptions for X, E j/ and E J/.’ in Section 1, we have:

(i) For1 <k <m <n,

m—1 E’ d m—1 "
Xm,n_ _.J:Xk,n+zn_].- (11)
o = J
(i) Forl1 <k <n,
n—k E’ k—1 E”
d g ;
XEXen+y L-> 2 (12)
el

where as usual 2;):1 () =0.

Proof. For the logistic c.d.f. Fz,(x) in (1), equation (5) yields

X

o N n—k o
¢k(t):k(z)/_ooe”x(1iex) 1(1+lex> (1je—x)2dx

n 1 , ]
=k / uk—1+lt(1 _ u)n—k—ll‘ du
k] Jo

_Tk+it) Tn—k +1—ir)
T T(k) I'(n—k+1)

Denote the logistic ch.f. by ¢(¢) := I'(1 + it)I'(1 — it). Thus, the ch.f. of the
logistic kth order statistic for 2 < k < n — 1 can be factored as

(k—1+it)...(1+iOT A +it) (m—k—it)...(1 —i)['(1 —it)

(13)

Pr (1) =

k — 1! (n—k)!
it . it .
:(1+m)...(1+ll‘)(l—m)...(l—lt)¢(t). (14)
Similarly, (5) with k = 1 and k = n yields
n it n it
$1(0) =j1:[1(1 =)o) and () = ,1:[1<1 o). as)
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(i) The relations (14) and (15) imply for | <k <m <n
gm(t) _ (1— "—’)-1 (1= )™
Pr (1) I+ 2" a4+ 5!
¢E( 7)---PE (n,le—_l’_l)

(16)
PE(—557) - PE(—F)
where ¢ (t) = 1= is the standard exponential ch.f. This is equivalent to
m—1 P m—1 P
¢m(t),E¢E( 5) —@(z)E{m(ﬂ_}.) a7)

Since for independent random variables the product of their ch.f.’s equals the ch.f.
of their sum, (17) yields (11). The assertion in (ii) follows from (14) and (15). o

3 Proof of Theorem 1forr =1

To prove the sufficiency assume (2) with 7 = 1 and set k; = k. Relation (2) yields

it it
e (01— ) = g1+ ). (18)
Equation (18) and the inversion formula (8) imply
1 1 [ _ it
Ay IO U (e L SRIQLY
1

00 ) it
- —Iitx 1 l_
] e ( + k)gbk(t)dt

1
Fl(x) — %F]g(x). (19)
Integrating (19) and taking into account the boundary conditions, we obtain

R | Fan®)

Fie(x) = Fr41(x) = A p— (20)
Using (5) and (6), equation (20) can be simplified to
F'(x) = F(x)(1 = F(x)) = 0, (21

i.e., (9) holds true, which, along with the condition F(0) = %, completes the proof
of the sufficiency. The necessity follows from Lemma 1 (i).
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4 Proof of Theorem1forr =2andr =3

Let us introduce the notation

F'(x)

m, XE(IF,VF). (22)

w(x) :=
We will suppress the dependence on x in expressions for w, F, and F.
The case r = 2. Assume (2) with r = 2 and set k; = k. Hence,

(1= ) ) =1+ )1+ ).

Similarly to (19), using the inversion formula (8), one can see that (23) implies

k+1 " Vi " 1
F F, F F
Fl_F = 3 k+2)_ k k+2 (04
ko TkE2 ]Z;C(j i) kG D T a—bw-k-1n &
Integrating and taking into account the boundary conditions, we obtain
k+1 ’ / " /"
F F F F,
Fp — F _ 3 k+2) k k+2 05
k™ Tet2 2(1 n—j) K+ T -k —1) (25)
Applying (6) to the left-hand side of (25) yields
k+1
n . .
z(.)wa—n" j
: J
j=k k+1 / "
— (F_lé n Fk+2) K n Fiia . 26)
= j n—j k(k+1) (m—-k(n-k-1)

Using (5), we write the right-hand side of (26) in terms of F, F’, and F" only,
and after some algebra, obtain

QF — 1w’ = P(n, F,w)(w — 1) —k(2F — 1)(w — 1), 27)

where w = w(x) is defined by (22) and P(n, F,w) = 2nF —n — )Fw —
(n—1)F —1. Clearly w = 1 is a solution of (27). This solution corresponds to the
standard logistic c.d.f. Fy,. To prove the sufficiency part of the theorem, it remains
to show that this solution is unique. According to the assumptions of the theorem,
there are two distinct integers k; and k, such that (27) holds true for both k = k;
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and k = k. Writing (27) for these two values of k, subtracting the two equations
from each other, and dividing by k1 — k> # 0, we obtain

QF — (w—1)2=0. (28)
Since F(x) # % for x # 0, the only solution of (28) is w(x) = 1, which implies

the characteristic property (9). This, along with F(0) = % completes the proof of
the sufficiency. The necessity follows from Lemma 1 (i).

The case r = 3. Assuming (2) with r = 3 and setting k; = k, we have

2 . 2 .
¢k+3(t)j1:[()(1 i) = ¢k(t),-11,(1 Yo @

Similarly to (25), using the inversion formula (8) and integrating the resulting
expression, one can see that (29) implies

k+2 / /" /"
F, F F F
k+3 1 "k k+3
FoFeys=y (£ 4 A2 Yok ks )
ParA A ij  (n=i)n—j)
"
Fl F

k+3
Tk )k 12 T =R —k-nn—k—2 Y

where the summation in ) isoverall k <i < j < k + 2. Applying (6) to the
left-hand side of (30) we obtain

k+2 k+2 / "
Z n Fj(l—F)n_j:Z(F—IQ-FM)—Z/(F—IQ/—A)
Z\ PAYVIRERY TR
Yol F"
+ k k+3 (31)

Kkt )k +2) il —k—D—k=2)

Using (5), we write Fk(i) and Fk(i_:3 for 1 <i < 3interms of F@ for 0 <i <3
After some tedious algebra, one can see that (31) is equivalent to

O, F,w)
= kP1(F,w)(w—1) + kP>(n, F,w)(w — 1) + k2 P3(F)(w — 1)?, (32)
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92 M. Ahsanullah, G. P. Yanev and C. Onica

where w = w(x) is defined by (22) and the polynomials Q (n, F, w),

Pi(F,w) =33F?—=3F + 1w, (33)
Py(n, F,w) =3(n—2)F>—(n —8)F —3

—2F[3nF? =3(m + )F +n + 1w, (34)

P3(F) = (3F?> —3F 4+ 1) (35)

do not depend on k. One solution of (32) is w = 1, which yields Fr (x). It remains
to prove that this is the only solution. By the assumptions, (32) holds true for three
distinct values of k. Writing (32) for k = k; and k = k5 and subtracting the two
equations from each other, we obtain

Pi(F,w)(w—1)+ Pa(n, F,w)(w—1)?+ (k1 + k») P3(F)(w —1)3 = 0. (36)

Next, writing (32) for k = k, and k = k3 and subtracting the two equations from
each other, we have

Pi(F.w)(w —1) + Pa(n. Fow)(w — 1) + (k2 + k3) P3(F)(w — 1)> = 0. (37)
Finally, subtracting (36) from (37) and dividing by k3 — k1 > 0, we have
BF?-3F + 1)(w—1)>=0. (38)

Since, 3F% —3F + 1 # 0, the only solution of (38) is w = 1, i.e., (9) holds true.
Now, taking into account F(0) = % we complete the proof of the sufficiency. The
necessity is a straightforward corollary of Lemma 1 (i).

5 Proof of Theorem 2

We follow the scheme of the proof of Theorem 6 in Lin and Hu [9]. Recall the
notion of intensively monotone operators and &-positive families (Kakosyan et
al. [8]).

Definition 1. Let € = € [0, co) be the space of all real-valued functions defined
and continuous in the interval [0, c0). The notation f > g for f, g € € means
that f(¢) > g(¢) for all ¢+ € [0,00). Let A be an operator mapping some set
& C € into €. We say that the operator A is intensively monotone, if for any f;
and f> belonging to &, the condition fj(t) > f>(t) for all T € (0, ¢) implies that
(Af1)(r) = (Af2)(z) for T € (0,¢) and, in addition, the condition f;(t) > f2(7)
for all T € (0,¢) implies that (A f1)(¢) > (Af2)(¢).
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Definition 2. Let & C € and { f} } 1A be a family of elements of &. We say that
the family { f) } e is strongly &-positive if the following conditions hold true:

(i) forany f € & there are 7o > 0 and Ag € A such that f(t9) = f3,(t0);

(ii) forany f € & and any A € A either f(t) = f,(¢) forall ¢ € [0, 00), or there
is § > 0 such that the difference f(¢) — f3(¢) does not vanish (preserves its
sign) in the interval (0, d].

The following example and lemma play an essential role in the proof.

Example 1 (Lin and Hu [9]). Define & to be the set of all survivor functions G,
which are real, analytic, and strictly decreasing in [0, o). For each k, assume that

the kth derivative E(k) is strictly monotone in some interval [0, 8;). If G (x) =
ﬁ, x > 0, where L € A = (0,00), then the family {G},eca is strongly
&-positive.

Lemma 2 (Kakosyan et al. [8, Theorem 1.1.1]). Let A be an intensively monotone
operator on & C € and let { f} e be a strongly &-positive family. Assume that
Afy = fyforall A € A. Then the condition Af = f, where f € &, implies that
there is A € A such that [ = fy. In other words, all solutions of the equation
Af = f, belonging to &, coincide with elements of the family { f) }rea-

Proof of Theorem 2. The case k = 1 is Theorem 6 in Lin and Hu [9]. Assume
2 < k < n. The necessity statement follows from Lemma 1 (ii). We shall
prove the sufficiency. For E]’ and E j/-’ ,1 < j < niid. standard exponential,
recall (David and Nagaraja [4, pp. 17f.]) the following formula for the maximum
Ey, ,i=max{E],..., E}:

n /
—f (39)
= J

Since Ujf = e Ej for 1 < j < n are uniform on [0, 1], we have that

U/, = min{U].... .U} & e=Enn (40)

N

is distributed as the minimum of » i.i.d. uniform [0, 1] variables. (3) and (39) yield

w1 E/
d eXk ne Z_i=1 Tj d eXk ne El | x_i d U B eXk,n
X d 4 g Lkl (41)
n—k Ej Bk U/ '
_Zj=l va e ’ ln k
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Let us make the change of variables

" Xk,
Upg—1¢™"

:/—,
Ulnk

Denote Gy (x) := P(eX < x) and Gx(x) := 1 — Gx(x). For the p.d.fs JoXin
and fy, ; of eXkn and Ui, ;, respectively, we have

n=U'k_1. {=Ul, (42)

lwmm:k@F?wﬁ?%wﬂm for, ) = j0 = )71 @)

Therefore, for the density fg of £, we obtain
1,1
fe(u) = / / Jenc(w,v,w)dvdw

[ e o ()5 ()i () v

where C(v, w) = n!(1— v)k_z(lzw)”_k_l/(k —2)!(n —k —1)!. Now, referring
to (41) and (44), one can see that Gy (x) satisfies forn > 3

Gx( = [ fetw du

//C(” w)[/GX(xw/v)G;} "(”;”)dGX( )]a’vdw
//C(” w) Hk(GX( ))dvdw 45)

where, making the substitution t = Gx (%), one can write Hy () as

1
Hy(») =/1 (1-0)"%ak, 0<y<1. (46)
-y

Define & to be the set of all survival functions G as in Example 1 above. Define
also an operator A on & by

AGx (x) _/ f C(v, w) Hk(GX( ))dvdw 47)

Since Hy(y) = ky"*(1 — y)*=1 > 0 for 0 < y < 1, we have that Hy(y) is
increasing for any y € (0,1) and 1 < k < n, which implies that 4 is an inten-
sively monotone operator on &. By Example 1, the family {G ) },ca is strongly
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&-positive. We have that AG, = G, by the necessity part of the theorem. Finally,
by Lemma 2 and (45) (which means AGxy = Gyx), we conclude that Gy = G .
The condition F(0) = % implies A = 1 and completes the proof. o

6 Concluding Remarks

Theorem 1 characterizes the standard logistic distribution through equalities in
distribution between two order statistics plus or minus sums of independent expo-
nential variables. In case of adjacent order statistics, the characterization involves
a single equality. If the order statistics are two or three spacings away, two or three
equalities are needed, respectively. Our second result characterizes the logistic
distribution by expressing the parent variable X as sum of one order statistic and
a linear combination of independent exponential variables. In the corollary we
singled out the expression involving the sample median.

One open question is if the number of characterizing equalities in the non-
adjacent cases of Theorem 1 can be reduced. Another area of future study are
other identities involving order statistics subject to exponential shifts. Some re-
sults in this direction are given in Ahsanullah et al. [2]. One can also look for
connections between random shifts and contractions (Wesotowski and Ahsanullah
[11]).

From the view point of application, it would be desirable to give an easily un-
derstandable interpretation of the conditions on order statistics that characterize
the logistic distribution. Such an interpretation could help to select and apply the
logistic distribution to real-world problems.
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