

Extraction of Interaction Events for Learning Reasonable Behavior in an
Open-World Survival Game

Emmett Tomai
University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539

emmett.tomai@utrgv.edu

Abstract
Extracting event knowledge from open-world survival video
games is a promising domain to investigate the application
of Machine Learning techniques to routine human decision
making. This contrasts with and builds upon typical game-
based decision making work that focuses on optimal behav-
ior. We propose an Interaction Graph data structure that can
be trained from game play to enable hybrid reasoning and
statistical estimation about what events can happen in the
world. This enables an agent to exhibit increasingly more
reasonable behavior after low numbers of training runs. An
implementation and initial experimental validation are pre-
sented.

 Introduction
The problem of agents that can make intelligent decisions
is a long-standing AI challenge, which has seen fruitful
work with both classic board games and video games. In
classic board games, the decision making is characterized
by selecting the optimal move from a deceptively simple
set of possible moves. There are only a handful of pieces
and actions in games like Chess or Go, but the interde-
pendency of one move on another creates a combinatorial
explosion of possible states. Recently, Deep Learning with
Monte Carlo simulation has proven highly successful in
surpassing the highest levels of human performance in Go
(Silver et al. 2016). Machine Learning has also been suc-
cessfully applied to a range of video game playing chal-
lenges (cf. Galway et al., 2008), notably the recent success
of Deep Reinforcement Learning with Atari games (Minh
et al. 2015). In most of this work, the decision making also
selects from a small set of possible actions, with an explo-
sive number of resulting configurations (here due to fine-
grained spatiotemporal state). Considering both cases, Ma-
chine Learning for games has advanced the state-of-the-art
in both notably deliberative and reactive decision-making.

Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

And in both cases, the type of decision making strongly
applies to expert, task-specific performance.
 In contrast, routine human decision making is not as
notable for optimality as it is for robustness in the face of
irrelevant state, adaptability to different contexts, and
quick learning. Here too, video games can provide a useful
domain for investigation. Open-world survival games are
highly exploratory in nature, and involve a wider range of
tasks repeated in an ever-evolving context. The goal is less
to find the optimal behavior to win the game, and more to
explore the range of behaviors that meet the criteria of sur-
viving to explore further. Players must decide whether and
how to respond to a variety of opportunities and threats as
they are discovered. Reasonable behavior in this context is
not optimal, but should (1) make choices consistent with
pursuing some set of (possibly changing) goals, (2) not
choose actions that are clearly detrimental or inferior in the
short-term to other options, and (3) not require re-learning
applicable knowledge in a new situation. The broad goal of
this work is to explore how Machine Learning techniques
can be applied to learning this reasonable behavior.
 We hypothesize that this challenge requires an AI sys-
tem to be able to identify the notable short-term outcomes
afforded by the current situation, regardless of whether
those outcomes are relevant to a specific task. The abstrac-
tion of durative events provides a composable structure to
enable the system to accumulate and generalize operational
knowledge around. In essence, we want to learn the char-
acteristics of events in the environment, rather than a glob-
al policy to achieve a specific goal in the environment. We
propose to automatically segment events in terms of unique
interaction configurations between agents and other enti-
ties. The result is a novel Interaction Graph (IGraph)
where nodes are types of interaction events, and edges are
transitions between them. We then use each node and edge
as context for probabilistic models that learn to predict
features of the events and transitions (e.g. how long will it
last, will it result in this or that outcome, will it lead to an-
other type of interaction). Extracting and using this

knowledge is a specialized type of reinforcement learning
(Sutton & Barto 1998), where the IGraph fills the role of
the MDP, enabling algorithms that can predict possible
paths through the transition space.
 In this paper, we present the IGraph concept and imple-
mentation details to explain how it extracts event models
from game play. We also present a validation experiment
providing evidence that it is capable of learning how to
make intelligent decisions about considering choices, out-
comes and how to reach goals in the world.

Related Work
For Machine Learning in modern video games, much prior
work has focused on optimizing agents’ low-level, real-
time movements and actions using neural networks, evolu-
tionary computing and reinforcement learning (cf. Galway
et al., 2008). These techniques have also been applied to
tactical and strategic decision-making, by isolating those
elements and creating appropriate abstractions of the game
state for the models to work with.
 The most prolific genre for work in tactical and strategic
decision-making in video games has been the Real-Time
Strategy (RTS) genre. RTS work is a good analogue for
decision-making in open-world survival games, since RTS
popularized the mechanics for gathering, building and
crafting, as well as the movement, control and combat
models used in most 2d survival games. The prior work in
RTS games suggests that learning in a complex game envi-
ronment requires isolating specific abstractions of state and
action. Several projects have used reinforcement learning
with neural network q-value approximation to learn com-
bat micro-management (Micic et al., 2011; Shantia et al.
2011; Wender & Watson, 2012). These approaches suc-
ceed by greatly simplifying the action space to fight or
retreat scripts, and simplifying the feature space using
manual abstractions such as the closest enemy or aggregate
enemy health within range. These abstractions allow the
learning model to work with relevant, fixed-size input.
(Jaidee & Munoz-Avlia, 2012) presented a q-learning algo-
rithm capable of playing complete, simple RTS scenarios
by training on each class of unit and building separately.
The state space and action space could therefore be tailored
to each class, greatly reducing the size. Again, various use-
ful abstractions were used in the state space and the action
scripts (e.g. count of units stronger than x, attack all units
weaker than attacker). (Sharma et al., 2007) used a three-
layered architecture with a scripted planner on top, hybrid
case-based reasoning and reinforcement learning
(CBR/RL) for tactical decisions, and reactive planning at
the bottom to show transfer learning in a simplified RTS
environment. The CBR/RL component replaces the typical
MDP by storing the learned transitions in cases and retriev-

ing them in new scenarios. The inputs are global abstrac-
tions of game state (e.g. overall unit count, territories held)
and the action space is simplified to Attack, Explore, Re-
treat and Conquer goals that are carried out by the reactive
layer. (Synnaeve & Bessiere, 2012) used Bayesian infer-
ence to predict the outcome of attacks over the abstractions
of regions and army strengths. In this work, we embrace
the need for modular, local abstractions to learn over, but
seek to move away from hand-made models towards a
more general framework of events and outcomes.
 The nodes of the IGraph provide context to train, vali-
date and utilize regression and classification models for
reasoning tasks. These models have become very mature in
recent years, with a number of stable and accessible librar-
ies providing a wide variety of off-the-shelf implementa-
tions. Many models can be found supporting continuous
and categorical input and outputs, probabilistic predictions
and dimensionality reduction. For this project, we are
working in the Scientific Python1 environment with easy
access to linear and polynomial regression, as well as a
wide range of trainable classifiers and regressors including
Naïve Bayes, Decision Tree ensembles, SVM, Gaussian
Processes and Discriminant Analysis.
 Selecting from a pool of models and parameters is a
fundamental problem in any data analysis field. This work
follows the established view of model selection as an ex-
haustive search over the quality of results of the available
models. (Linhart & Zucchini, 1986) formalized this using
n-fold cross-validation for each model, and (Schaffer,
1993) applied it specifically to selecting a machine learn-
ing classifier for a given data set. Model parameters can be
viewed as a recursive extension of that search. Significant
work has also been done on improving that search by lev-
eraging heuristic knowledge about the models (cf. Brodley,
1993) and better measuring the fit of a model (cf. Browne
& Cudeck, 1992; Kohavi, 1995). Model parameter tuning
and feature selection can be broadly viewed as recursive
extensions of that search, and again, considerable work has
gone into those areas both for general-purpose and model-
specific techniques (cf. Guyon & Elisseeff, 2003; Yu &
Liu, 2004; Snoek et al., 2012).

Open-World Survival Games
In an open-world survival game, the player is free to move
throughout the game world, collecting resources from node
entities such as trees, ponds and rocks. These resources are
used to craft useful items such as tools and weapons, as
well as structures that provide benefits such as shelter and
storage. Roaming enemies (mobs) must be avoided or de-
feated in combat or else they will kill the player. Typically,

1 https://www.scipy.org/about.html

there are additional environmental features such as hunger,
thirst and exposure that can also end the game. While the
general goal of the genre is to not die, the player experi-
ence is centered around exploration. The open world
means that the player can go anywhere at any time, and
more advanced enemies and resources are found together
in different areas. The craftable items (and structures) are
arranged in an advancing tree, such that creating later items
requires creating earlier items, either because they are re-
quired for the crafting, required for gathering more ad-
vanced resources, or because the earlier items are neces-
sary to survive to get to the later items. This gives the
player an immediate progress system, while still allowing
freedom to explore different branches, areas and secondary
goals. These games are often paired with secondary goals
such as building creative structures, defeating specific en-
emies or following stories laid out in the world.
 Open-world survival games can have fast-paced action,
such as numerous recent AAA “sandbox” shooters, but the
genre is not specifically based on that interface. This work
takes place at the level of decision-making about behav-
iors, such as walking to a pond and drinking from it or
moving to a new region to explore. This maps conveniently
to 2d survival games using a click-to-move interface, which
we consider here. Recognizing such behaviors in a contin-
uous control environment is outside the scope of this pro-
ject, but given that actions like gathering and attacking are
discrete and clearly observable, many of the noise prob-
lems inherent in continuous movement could be factored
out.

Interaction Graph
The IGraph is a set of nodes and edges where each node
abstracts an interaction: a set of behaviors being performed
together over an interval of time that share at least one en-
tity. This does not mean that the behaviors start and end at
the same time, only that they fully cover the interval of the
node. The IGraph represents transitions between these in-
teraction states. For example, as shown in Figure 1, the red
agent begins by performing a gather behavior targeting the
flower bush in part (a). Both entities are part of the interac-
tion. The green agent then begins to attack the red agent in
part (b), joining the interaction. This interaction node exists
for as long as both the green and red agents continue these
behaviors and no other behaviors are performed involving
red, green or the bush. From there, the red agent might
choose to attack the green agent back, as in part (c). This
transitions to a new interaction node, where the bush is no
longer part of the interaction. Alternatively, the red agent
might choose instead to attack innocent passerby blue, who
is idle, and is part of the interaction node in part (d). Each
node in the IGraph has a primary agent entity, which is the

point of view of the transitions. Each node is unique to the
set of behaviors and arguments in the interaction. For ex-
ample, all cases in this world where (gathers e1 e2)
and (attacks e3 e1) are grouped into one node with
the agent in role e1 as primary and a second node with the
agent in role e3 as primary.

Figure 1. Example interaction states.

 Transition edges within the IGraph are of four types,
relative to the primary agent:

1) A choice transition involves the primary agent de-
ciding to change the behavior they are performing. A
choice transition may stochastically lead to more than
one node, but is initiated as part of the decision pro-
cess. In Figure 1, (b)=>(c) is a choice.

2) An external interrupt transition involves an entity
not in the interaction starting an overlapping behavior
to become part of the interaction in the destination
node. In Figure 1, (a)=>(b) is an external interrupt.

3) An internal interrupt transition involves an entity
in the interaction starting a new behavior. If the green
agent in (c) ran away, this would be an internal inter-
rupt. A special case of this is the primary agent dying.

4) A completion transition happens when the primary
agent behavior completes, either by succeeding or by
failing. If the red agent in (b) finished gathering from
the bush, this would be a completion.

 The IGraph provides a learnable, inspectable framework
for generalizing predictions and estimations about what
can happen in the game world. Formally, each node con-
sists of:

B: the set of behaviors in the interaction.

L: a set of entity variables generalizing the entities in
B.

C: a set of choices that have been observed, where
each choice is a behavior type and bindings to L.

O: a set of outcome effects observed on completion.

T: a set of observed interrupt transitions, with bind-
ings to L and open bindings to external entities.

 Predictors (classifiers and regressors) specific to each
node are trained to predict time-to-completion and the
probabilities for each outcome in O, the probabilities of
each transition in T (including the notable probability of
death), and the probabilities of each transition following
from each choice in C. Both interrupts and outcomes are
treated as independent probabilities for simplicity, such
that the posterior probability of an outcome (assuming that
the agent doesn’t chooses to continue the behavior) is its
estimated probability multiplied by (1.0 - the probability
that none of the interrupts happen).

Fundamental Reasoning Abstractions
Identifying the right state and action abstractions for each
predictor is critical to good performance. Rather than hand
making those abstractions, our training system starts with a
set of reusable fundamental reasoning abstractions. These
are concept models that abstract details of the world such
as entities having positions in the world, behaviors taking
time, behaviors having outcomes, gaining an item being
when something is in an agent’s inventory that was not
there before, or the definition of the distance between two
entities. These abstractions are not linked to any particular
prediction, but it is up to the learning process to determine
where and when they are appropriate to use.

Training the Interaction Graph
The IGraph is built by playing the game and recording
traces of entity behaviors. It can be easily updated and re-
trained as more data becomes available. A sequence of
exemplar nodes is created from a game trace by starting
with the sequence of behaviors for the primary agent enti-
ty. In Figure 2, part (a), the green, orange and blue rectan-
gles represent a sequence of primary agent behaviors on a
timeline. Every other behavior in the trace is then com-
pared to that sequence, such as the purple behavior shown
in part (a). If it has common entities with the green and
orange behaviors (which it overlaps), it splits the sequence
into five nodes, as shown in part (b). The second and third
nodes in part (b) involve both the primary agent and the
entities involved in the purple behavior. As shown in parts
(c) and (d), if the second purple node has overlapping enti-
ties only with blue (and not orange), then there are still
only five nodes.

Figure 2. Segmenting trace behaviors into exemplar nodes.

 Each exemplar sequence is fed into the training IGraph,
and each exemplar node unifies its behavior signature (the
behaviors with specific entity bindings) against B(L) from
the existing graph nodes. If there is a match, the exemplar
node is added as an exemplar to that node, to be used to
add choices, outcomes and transitions, and to train the pre-
dictors. Otherwise a new node is created.
 The set of Choices C for a node are identified by exem-
plars where the primary agent behavior does not complete,
but is different in the next node in the exemplar sequence.
Outcomes O are identified for completed behaviors by tak-
ing a state delta between the world state at the start of the
exemplar node s0 and the end s1. The delta is taken by
applying a generic set of fundamental abstractions, which
can be expanded and left for the system to sift through. For
this experiment, the effect models were:

obtain(entity_id, item_type_id, ct): the
specified entity has ct more of the specified item type
in their inventory in s1 than in s0.

lose(entity_id, item_type_id, ct): the
specified entity has ct less of the specified item type
in their inventory in s1 than in s0.

die(entity_id): the specified entity, which is a
decision-making entity (player, agent or mob), exists
in s0 and not in s1.

remove(entity_id): the specified entity, which is
not a decision-making entity, exists in s0 and not in
s1.

 The outcomes are sets of always co-occurring effects
observed. For example gathering from a bush might always
give leaves and flowers (one outcome) but only sometimes
twigs (another, independent outcome). The exemplars
stored in the node for the completion cases are marked as

positive or negative examples for each of the outcomes.
Those exemplars are also used to train the time-to-
completion predictor.
 Internal and external interrupt transitions are identified
from the sequence of exemplars as all those that are not
choices or completions. Interrupts are mutually exclusive,
so each exemplar is stored as a positive example of only
one interrupt transition. The exemplar behavior signature
for the destination of the transition is compared against the
source signature to identify open entity bindings in the
former (e.g. “the entity who attacked”). In generating posi-
tive and negative training data, the open entity bindings are
bound against each potential entity in the world (with only
type and range filters). So in the case of an external attack,
the entity who did attack in the exemplar sequence is a
positive example, while all the entities who did not attack
(in that exemplar or any other) are negative. Alternative
negative exemplar generation strategies are one of many
settings that the learning process can automatically search
and validate to find the best predictions and estimates.
 Once the available exemplars have been stored in the
training IGraph, the predictors are trained. For a continu-
ous value such as time-to-completion, a set of regression
models are automatically evaluated, while for categorical
values a set of classifiers are automatically evaluated. For
binary categorical values, regression to probability be-
tween 0 and 1 is also considered. The feature vectors used
as input to each candidate predictor are generated from all
the fundamental abstractions that apply to the entities in-
volved in the interaction. This includes entity types and
quantities as well as attributes (both type-level values such
as the movement speed of a bear, and instance-level values
such as an entity’s current health). If a behavior binds more
than one entity, than all the fundamental abstractions of
relationships between entities are also included. Spatial
abstractions are particularly useful here, such as distance,
path distance, distance to a path and topological grouping.
The training process includes all available relationships
and uses simple dimensionality reduction and verification
techniques to figure out what is predictive.
 For a given predictor, a set of learning models are tried.
The training feature vectors are filtered to remove categor-
ical values if they are not supported, and to bin continuous
values if they are not supported. Each model is wrapped (if
necessary) to provide normalization of continuous values
based on the training data and dimensionality reduction if
possible. N-fold cross-validation is also wrapped around
each learning model. Based on the output of the validation,
the predictors can be compared for effectiveness, and/or
additional volume of exemplars can be generated by the
system. An accepted learning model is retrained on the
entire set, subject to dimensionality reduction, then re-
trained on only the applicable features.

 In order to support quick evaluations of the threat of
death, the value of dread is calculated for each node in the
graph, analogously to reward in standard MDP-based rein-
forcement learning. Instead of reward for a specific goal,
dread estimates how much death has come from passing
through that node. This mechanism should be extensible to
other generally positive or negative concerns.
 Finally, the training IGraph exports itself for run-time
use, removing exemplars and other unnecessary intermedi-
ate data.

Run-Time Interaction Graph Agent
In order to use the information extracted by the IGraph, a
run-time agent can be assigned to an agent entity in the
game world and given a set of (possibly changing) goals to
attempt to reach. Importantly, the IGraph does not have to
be trained on those particular goals (although it should
speed up training). The goals available are determined by
the game and the agent must be able to evaluate against the
game state to determine when they are met.
 The agent monitors the game state by generating the
behavior signature for itself each frame. Whenever the
signature changes, it retrieves the corresponding node from
the IGraph. When in an idle state, the agent retrieves all
choice transitions from that state, gets the destination
IGraph nodes, generates valid bindings to the entities in the
world, and evaluates the resulting candidate states. The
evaluation calculates three values: expected reward, ex-
pected cost and what we refer to as concern. The expected
reward is a straightforward utility calculation of the esti-
mated probability of each outcome, given completion, by
its value to the agent's goals and the estimated probability
of completion. Likewise, the expected cost is simply the
estimated time to reach completion. In considering each
candidate choice, the agent uses the value ratio, which is
the expected reward over the expected cost. Concern is an
estimate of the risk of death (losing) for each choice. The
destination node has its own predictor for the probability of
a death outcome in the absence of any transition to another
node. This is added to the sum of dread for each possible
interrupt transition out of that state, multiplied by the prob-
ability of that transition.
 The candidate choices are sorted according to their value
ratio and concern. Choices with no value are discarded, as
a random movement would be preferable. The remaining
choices are separated into low, medium and high concern
bins and sorted by value ratio. The highest valued choice in
the lowest non-empty bin is chosen for execution.
 For non-idle states, the only difference is that the current
state is also evaluated and sorted with the rest to see if the
agent should stick with the current behavior.

Experimental Setup

Game Setup
As an initial validation of the IGraph to extract useful
knowledge about events and outcomes, we have created a
testbed 2d open-world survival game. This experimental
game simplifies the out-of-scope behavior recognition
problem as click-to-move behaviors are directly identifia-
ble as the commands given by the experimental agent. The
mobs in the game use the same behavioral system, so their
behaviors are easily traced as well. The game uses a stand-
ard Component-Entity-System architecture (Boreal Games,
2013), where all state data is contained in plain data arrays.
Every agent decision creates a behavior component which
uses Behavior Tree semantics (Simpson, 2014) including
status codes RUNNING, SUCCESS and FAILURE. In this
way, standard game architecture enables data collection,
with minimal extra effort in the game engine itself. Entity
attributes and relationships are likewise observable, but for
this work we have simplified the process by making those
values directly available from the components. This is sim-
ilar to data that is made available through systems like the
Brood War API2 for StarCraft AI work. Also for experi-
mental convenience, we have a non-interactive Python
build of the game that runs agents either headless or with a
minimalist visualization for debugging.
 To generate initial data, the game is played by an Explo-
ration Agent that chooses random behaviors to execute. At
any time that no behavior is in progress, the agent binds all
possible behaviors and randomly selects one. Due to the
very high branching factor, movement to all possible emp-
ty locations is not included. Instead, movement to a single,
random location is included as a possibility. During execu-
tion of a behavior, the agent may randomly interrupt with a
certain probability, and select a different behavior. A run
ends when goals set for the agent are fulfilled, the agent
dies, or a time limit is reached. The attributes used for
training predictors are determined by the game engine (e.g.
hp, attack speed, awareness distance) while all relationship
abstractions and effect models that can be evaluated
against the game state are included.

Experimental Design and Results
The initial testing is focused on its ability to quickly learn
to play the basic game by playing. For each test, 100 sce-
narios were played by the run-time agent and scored for
success rate and time to win. Each scenario involves meet-
ing a set of random gathering goals from randomly placed
resource nodes while avoiding or defeating randomly
placed mobs. The first test was performed with an empty
IGraph (0 training games). After each test, the IGraph was

2 https://bwapi.github.io/

trained with 50 more training games and tested again, up to
500. The success rates are shown in Figure 3, and the aver-
age time to success (among the successful runs only) are
shown in Figure 4.

Figure 3. Success rate over 100 testing runs after training on 0-
500 random sample runs.

Figure 3. Average time spent completing the successful runs after
training on 0-500 random sample runs.

 As shown in Figure 3, the untrained success rate (ran-
dom behavior) is around 15%. The system very quickly
improves, although it also flattens out rather quickly. Be-
cause of the transparency of the extracted events, we can
see that the improvement is due to learning to predict 1)
which types of resources nodes give which types of items,
2) the time cost to gather from a given node, and 3) which
behaviors will directly (i.e. attack) or indirectly (i.e. mov-
ing to close to a patrolling mob) lead into unwinnable
fights. The stochastic nature of resource drops and fights
does mean that the system could never be right all the time,
and the simplicity of these initial scenarios does limit the
creative responses available to the agent.
 The average time spent completing the goals is roughly
stable, although it does increase with more training. To
clarify, this has nothing to do with processing time, as the
times are in world clock, which runs on a fixed tick. It is
possible that since the more trained agents win more often,

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400 450 500

Avg. Time for Successful Runs

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400 450 500

Success Rate

they are winning harder/longer scenarios. The scenarios are
all short gathering cycles, as we saw no real difference in
longer or more spread out scenarios except that they took
longer to process.

Conclusion and Future Work
We have proposed a novel knowledge structure, the Inter-
action Graph, which generalizes over interactions between
entities, presented the implementation details, and done
initial testing to verify that it can learn the basic game set
up. The IGraph learns from playing, enables reasoning
about all known possibilities in the state space and pro-
vides context for task-specific predictors to perform hybrid
symbolic/statistical reasoning. We have shown that as the
IGraph is trained, the agent behavior becomes more rea-
sonable in going after the right resource nodes and avoid-
ing detrimental combat.
 We are continuing to add more features to the game and
expand the model to handle them, including planning
ahead (crafting), memory for exploring, more complex
combat, environmental threats and multi-agent interactions
(cooperation and antagonism). Along with this incremental
development will be additional fundamental abstractions.
A key question we are exploring is how the IGraph will
scale, particularly at run-time, with the increase in com-
plexity of the game.
 We have also implemented a real-time Monte-Carlo
Tree Search component for focused training, allowing the
system to "rewind" and try alternative paths to quickly
refine its predictors. At this time we do not have experi-
mental validation of that system. We also ran a compara-
tive Convolutional Neural Network solution to the basic
game runs, but performance was so poor that we believe
there must be an implementation error to fix.

References
Boreal Games. (2013). Understanding Component-Entity-
Systems. https://www.gamedev.net/articles/programming/general-
and-gameplay-programming/understanding-component-entity-
systems-r3013. Retrieved July 10, 2017.
Brodley, C. E. (1993). Addressing the selective superiority prob-
lem: Automatic algorithm/model class selection. In Proceedings
of the tenth international conference on machine learning (pp. 17-
24).
Browne, M. W., & Cudeck, R. (1992). Alternative ways of as-
sessing model fit. Sociological Methods & Research, 21(2), 230-
258.
Galway, L., Charles, D. and Black, M. (2008). Machine learning
in digital games: a survey. Artificial Intelligence Review. Volume
29, Number 2, 123-161.
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and
feature selection. Journal of machine learning research, 3(Mar),
1157-1182.

Jaidee, U., & Muñoz-Avila, H. (2012, October). Classq-l: A q-
learning algorithm for adversarial real-time strategy games. In
Eighth Artificial Intelligence and Interactive Digital Entertain-
ment Conference.
Kohavi, R. (1995, August). A study of cross-validation and boot-
strap for accuracy estimation and model selection. In Ijcai (Vol.
14, No. 2, pp. 1137-1145).
Linhart, H., & Zucchini, W. (1986). Finite sample selection crite-
ria for multinomial models. Statistische Hefte, 27(1), 173-178.
Micić, A., Arnarsson, D., & Jónsson, V. (2011). Developing
game AI for the real‐time strategy game StarCraft. Technical
report, Reykjavik University.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., ... & Petersen, S. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540), 529-
533.
Schaffer, C. (1993). Selecting a classification method by cross-
validation. Machine Learning, 13(1), 135-143.
Shantia, A., Begue, E., & Wiering, M. (2011, July). Connectionist
reinforcement learning for intelligent unit micro management in
starcraft. In Neural Networks (IJCNN), The 2011 International
Joint Conference on (pp. 1794-1801). IEEE.
Sharma, M., Holmes, M. P., Santamaría, J. C., Irani, A., Isbell Jr,
C. L., & Ram, A. (2007, January). Transfer Learning in Real-
Time Strategy Games Using Hybrid CBR/RL. In IJCAI (Vol. 7,
pp. 1041-1046).
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van
Den Driessche, G., ... & Dieleman, S. (2016). Mastering the game
of Go with deep neural networks and tree search. Nature,
529(7587), 484-489.
Simpson, C. (2014). Behavior trees for AI: How they work.
http://www.gamasutra.com/blogs/ChrisSimpson/20140717/22133
9/Behavior_trees_for_AI_How_they_work.php. Retrieved July
10, 2017.
Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayes-
ian optimization of machine learning algorithms. In Advances in
neural information processing systems (pp. 2951-2959).
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An
introduction (Vol. 1, No. 1). Cambridge: MIT press.
Synnaeve, G., & Bessiere, P. (2012, September). Special tactics:
A bayesian approach to tactical decision-making. In Computa-
tional Intelligence and Games (CIG), 2012 IEEE Conference on
(pp. 409-416). IEEE.
Wender, S., & Watson, I. (2012, September). Applying rein-
forcement learning to small scale combat in the real-time strategy
game StarCraft: Broodwar. In Computational Intelligence and
Games (CIG), 2012 IEEE Conference on (pp. 402-408). IEEE.
Yu, L., & Liu, H. (2004). Efficient feature selection via analysis
of relevance and redundancy. Journal of machine learning re-
search, 5(Oct), 1205-1224.

	Abstract
	Related Work
	Open-World Survival Games
	Interaction Graph
	Experimental Setup
	Conclusion and Future Work
	References

