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Abstract. Opportunistic storytelling is an approach to interactive narrative 

where the AI challenge is to tell a story about what the player is doing, with 

game play providing the ordinary activity that underlies story events. In this 

preliminary work, we motivate the need for event prediction within this frame-

work, and describe a machine learning approach to the problem. We report re-

sults showing how different feature models can be learned and compared in this 

context, towards automating model selection. 
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1 Introduction 

One vision for interactive narrative seeks to combine the interactivity of video games 

with the immersion of narrative. However, the strength of game play as a model of 

interaction includes the freedom to master consistent systems through repetitive ex-

ploration [1]. This is at odds with the carefully curated web of meaningful events 

found in traditional narrative. But this conflict suggests a promising approach: to em-

brace game play as a stream of ordinary activity – the mundane events that are left out 

of stories – and recasts the AI challenge as telling a story, that meets authorial goals, 

about what the player is doing. In this opportunistic storytelling approach, the player 

has a clear role as game player, and the AI is constrained to the rules of the game 

simulation. We believe this can mitigate the conflict between player freedom and 

authorial control [2], and enable the AI to understand the domain in which the story is 

being told. We describe a game and narrative AI to implement this strategy, discuss 

the importance of event prediction, and report preliminary results in that direction. 

2 Opportunistic Storytelling: Game and Narrative AI 

Prior work in interactive narrative has used consistent simulation of agents [cf. 3], of 

story-specific behaviors [4] and of social interactions [5] to create interactive experi-

ences with different degrees of emergent vs. directed story. The Marlinspike system 
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[6] uses Inform7 [7] game mechanics, and opportunistically selects scenes that make 

prior player actions significant to the story. Our approach is similar, but we have cho-

sen graphical, open-world game play simulation, to lessen the problem of players 

feeling limited or led along. We are also combining the simple robustness of low-

level believable agents with high-level story direction, as done in IN-TALE [8]. In our 

case, believable refers to meeting player expectations for the game mechanics, and the 

high-level direction is opportunistic guiding towards desired story states. 

We have created a procedurally generated, infinite world survival game, similar to 

Klei Entertainment’s Don’t Starve [9] and others. The player follows an upward cycle 

of collecting resources to craft and build in order to survive the environment. This 

provides everyday goals, actions and experiences. Autonomous agents in the game 

have the same capabilities as the player, and choose behaviors that are consistent with 

surviving. The goal is not for agents to act just like players, but to have behaviors that 

make sense – that players can explore and master. Within this world, stories emerge 

from simple interactions between the player and agents over gathering resources and 

avoiding threats. The job of the opportunistic storytelling system is to maximize the 

probability of those stories being experienced. It can only intervene on unseen entities 

and internal goals and attributes, similar to the alibi generation problem [10]. To do 

this, it must be able to predict outcome probabilities with and without intervention. 

Beyond integrating in a graphical real-time game world, the novel aspect of this 

work is using agent simulation to build a predictive model. Of course the game itself 

is already a perfect model, but simulating every possible future to find the narratively 

interesting ones is not tractable on-line. By running the game off-line, the AI can train 

models for estimating features and relationships among events. Typical machine 

learning work in video games [cf. 11] has focused primarily on models for optimal 

action selection. We believe that narrative intelligence will require learning and com-

posing many heterogeneous models under higher level control abstractions. At this 

time, we are focused on automated learning of event prediction. 

3 Learning Models for Event Prediction 

This preliminary experiment explores the impact of different models on event predic-

tion. The data is a set of gameplay traces where an agent is assigned to complete gath-

ering tasks in a randomly generated environment. Anywhere from zero to dozens of 

gathering nodes and enemies could be in sight of the agent at any time. The system 

applies a feature model to the traces to create standard classification data, then trains 

and tests its ability to predict the next agent action: Attack, Gather, Flee or Explore. 

Three feature models were evaluated. The individual model transforms every entity 

within visual range of the agent into a feature vector including its distance from the 

agent, health, combat power and the resources that can be gathered from it. Agent 

attributes such as risk aversion (randomly assigned) are also included. The paths 

model includes a numerical estimate of how clear the path from the agent to the entity 

is – a higher-level abstraction that should be relevant to predicting what will happen. 

The regions model clusters entities into spatial groups and aggregates their individual 



attributes. Again, this higher-level abstraction would be relevant to a human evalua-

tion of the agent’s next move. For each model, the experiment was run with 25, 50, 75 

and 100 traces, randomly selected and split in half for training and testing. Each con-

dition was averaged over 1000 runs. Both Naïve Bayes and Random Forest classifiers 

were used, with no notable difference. The Random Forest results are reported. 

Results for Attack and Flee events were very poor across the board (precision and 

recall < 0.1), and degraded with more training samples. Precision and recall for pre-

dicting Explore and Gather events are shown in Figures 1-4. The horizontal axis 

shows number of game play traces used. The simple individual model generally im-

proved with additional samples, but was erratic in its recall for Explore events. The 

paths model was the most consistent performer across both tasks, suggesting that it is 

an appropriate level of abstraction for these tasks. The more complex regions model 

showed no advantage, and significantly underperformed in recall for Gather events. 

 

Fig. 1. Precision for predicting Explore events with three different feature models 

 

Fig. 2. Recall for predicting Explore events with three different feature models 

 

Fig. 3. Precision for predicting Gather events with three different feature models 
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Fig. 4. Recall for predicting Gather events with three different feature models 

Having established the experimental pipeline, we are encouraged by the ability to 

get coherent results from simple, fast learning models with under 50 training samples. 

The easy interchange of features and learning models is promising for the future step 

of automated model selection and composition. 
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