
Simulating Aggregate Player Behavior With Learning Behavior Trees 

Emmett Tomai 

Rosendo Salazar 

Roberto Flores 

University of Texas – Pan American 

1201 W. University Ave. 

Edinburg, TX 78539 

tomaie@utpa.edu, rsalazar6@utpa.edu, rfloresx@utpa.edu 

 

Keywords:  

Virtual worlds, machine learning, player modeling, behavior trees 

ABSTRACT:  In this paper we investigate the use of Behavior Trees and machine learning to train behavioral 

controllers for human-like agents in a Massively Multiplayer Online Role-Playing Game.  A Learning Behavior 

Tree, based on the AI scripting technique from the video game industry, is used to model the overall behavior of the 

agents and to control training and execution of a learned sub-behavior (setting waypoints for more human-like 

movement between regions of interest).  We provide empirical evidence that agents using the learned controller 

show similarity in aggregate to human player populations in the same environment.  We argue that Learning 

Behavior Trees are a useful, general purpose approach for learning sub-behaviors within a larger behavior. 

 

1. Introduction 

Online virtual worlds are an increasingly significant 

venue for human interaction.  By far the most active 

virtual worlds are video games, headlined by the 

explosive success of Blizzard Entertainment’s 

Massively Multiplayer Online Role-Playing Game 

(MMORPG) World of Warcraft (WoW) and hugely 

ambitious follow ups like BioWare’s Star Wars: The 

Old Republic.  With growing awareness of the 

potential of these embodied, online interactions, there 

is increasing interest in virtual worlds for education, 

training and scientific research as well (cf. 

Bainbridge, 2006; Dickey, 2005). 

Due to the shared, persistent nature of these virtual 

worlds, user behaviors and experiences are shaped by 

aggregate population dynamics.  An MMORPG 

designer must be conscious of how each design 

decision will impact things like where players 

congregate in the world, the demand on shared 

resources and how they will help or impede one 

another.  These issues often cause unforeseen 

problems in games, and could easily derail research 

or training projects that cannot afford to simply try 

again later.  In this work we are investigating agent 

control models to mimic the aggregate behavior of 

MMORPG players.  These agents could ultimately be 

used to explore design decisions, automate pre-

testing before expensive live tests, or to make the 

world feel more full and alive for human players.  In 

this work we focus on the movement of agents as 

they pursue in-game goals. We introduce the 

Learning Behavior Tree control model and propose 

that it is a useful, general purpose approach to 

learning behaviors in the context of more complex 

behaviors. 

2. Related Work 

Simulating human-like crowds of pedestrians has 

been explored by Shao using a full-agent approach 

combining reactive controllers, scripted behaviors 

and mental states with path-planning and goals (Shao 

& Terzopoulos, 2005).  In contrast, Treuille proposed 

a deliberately simpler model with less individual 

variation but less cost in modeling and run-time 

resource requirements (Treuille et. al, 2006).  In both 

cases the goal was human-like crowd simulation 

based on local collision avoidance and individual 

global navigation.  Players in a virtual world do not 

move around like normal pedestrians, so the 



emphasized features such as local collision avoidance 

are not strongly applicable here.  But that work 

suggests that human-like simulation should pursue 

integration of reactive, scripting and planning 

behaviors. 

Automated learning techniques have been applied to 

learn human-like movement for virtual world agents.  

Henry trained an agent controller using Inverse 

Reinforcement Learning to navigate through crowded 

environments, making the distinction between 

shortest and human-like paths (Henry, 2010).  

Togelius evaluated several co-evolution strategies for 

creating car racing controllers with the aim of 

deploying a diverse population of human-like AI 

opponents in a car racing game (Togelius et. al, 

2007).  In the first-person shooter (FPS) video game 

domain, Geisler notes the high predictability and 

manual labor involved in traditional AI scripting of 

game agent opponents (bots) as motivation for 

automatic learning of human-like behavior (Geisler, 

2004).  Several approaches have been applied to learn 

human-like movement and facing.  Thurau used Self-

Organizing Maps and Artificial Neural Networks to 

learn based on position and relative enemy positions 

(Thurau et. al, 2003) while Geisler evaluated Naïve 

Bayes and neural network approaches (Geisler, 2004) 

with promising results.  These and numerous other 

results (cf. Galway et. al, 2008) have demonstrated 

that machine learning and evolutionary computation 

are well suited to optimizing problems that have a 

reactive nature (e.g. positioning relative to other 

agents, strategic responses), a small number of output 

dimensions (e.g. movement and facing) and work at a 

single level of abstraction (Bakkes et. al, 2012).  

However, moving to more complex behaviors 

requires working at multiple levels of abstraction 

(Bakkes et. al, 2012).  Several established cognitive 

architectures have been applied to the problem of 

learning goal-based movement in games.  Soar was 

proposed for creating synthetic adversaries in the 

MOUT (Military Operations on Urbanized Terrain) 

domain, emphasizing believability and diversity as 

we do here (Wray et. al, 2005).  It was evaluated on 

its ability to show transfer learning for different goal 

locations and topologies (Gorski & Laird, 2006).  

Best detailed how ACT-R could be used in the same 

domain with lower-level perceptual input only (Best 

et. al, 2002).  Both systems learn from experience 

how to accomplish a certain goal.  By contrast, we 

are beginning with a human-authored script and 

learning from examples how to refine it to better fit 

human-like behavior.  Several approaches have found 

success by combining learned behaviors with human-

encoded knowledge.  Spronck has applied Dynamic 

Scripting to both group combat in the Role-Playing 

Game (RPG) genre and strategic decision-making in 

the Real-Time Strategy (RTS) genre (Spronck et.al, 

2006).  A knowledge base of manually created rules 

is combined with learning inclusion and ordering of 

those rules into scripts.  Marthi used Hierarchical 

Reinforcement Learning for learning joint movement 

of units in the RTS domain (Marthi et. al, 2005).  The 

reinforcement learning of movement is embedded in 

a manually created concurrent ALisp program.  The 

program encodes knowledge about the task context 

and controls both the training and execution of the 

learned behaviors in that context.  We propose a 

similar approach in this work, with a more explicit, 

declarative composition.  Finally, Schrum has created 

a FPS bot architecture that learns combat behavior 

using Neuroevolution (Schrum et. al, 2012) and won 

the 2K Games’ 2012 BotPrize while being judged as 

human more than 50% of the time (Karpov et. al, 

2012).  The learned combat behavior is one 

component of the architecture, organized in a 

Behavior Tree-like structure that encodes human 

intuition about the priority and trigger conditions for 

that behavior and others.  In this work we look more 

generally at Behavior Trees as a flexible controlling 

architecture for mixing learned and procedural 

behaviors. 

3. MMORPG Player Behavior 

The evaluation domain for this work is player 

movement between regions of interest in a 

MMORPG.  In MMORPGs, players control avatar 

characters in a physically simulated virtual world that 

is both shared and persistent.  In contrast to more 

reactive and/or linear environments in other genres, 

players roam freely in the world, picking up tasks and 

completing them at their own discretion.  There are 

different regions where each task is acquired, 

completed and turned in for credit.  Thus, players 

have goal-directed travel between those regions of 

interest.  The player freedom to pursue any number 

of tasks or none at all in the shared space makes the 



population dynamics difficult to predict, as each 

players’ actions impacts the experience of all the 

players around them in a feedback loop.  This work 

seeks to generate populations of independent agents 

in an MMORPG world that exhibit human-like 

aggregate behavior, specifically in how the 

population moves between points of interest.  Other 

behaviors such as task decision making are not 

addressed in the scope of these experiments. 

To collect player behavior data, we created a light 

weight, research focused MMORPG.  We gathered 

data from 37 human players playing together in a 

laboratory setting.  The game collects a wide range of 

data for each player, including movement, avatar 

actions, UI actions and visibility of other entities.  

The experimental map was divided into separate 

areas with similar but different topology and tasks to 

perform.  20 of those players successfully completed 

the A area of the map (data set A) while 17 others 

successfully completed the B area (data set B). 

4. Learning Behavior Trees 

Behavior Trees are a technique for controlling video 

game AI agents that has gained considerable 

popularity, notably after use in Bungie’s Halo series 

(Isla, 2005).  Reusable, procedural behaviors are 

composed into trees using non-leaf composition 

nodes that explicitly specify traversal semantics.  The 

key advantage of Behavior Trees, from a game AI 

point of view, is that non-programmers can create 

new behaviors through graphical composition, and 

those trees can be reused as sub-behaviors in other 

trees.  More deeply, this is powerful because using 

only a small set of well-defined composition nodes, 

Behavior Trees can integrate different behavioral 

architectures from purely parallel reactive behaviors 

to purely sequential decision trees.  While this can be 

and is done using arbitrary finite state machines in 

game AI, using principled, declarative composition 

means that the behaviors themselves do not encode 

external transitions to other behaviors (Champandard, 

2008).  We propose that Behavior Trees offer a 

similar advantage to learning.  Within a Behavior 

Tree, manually written to match a complex behavior, 

various component behaviors may be learned at 

various levels of abstraction.  The structure of the 

Behavior Tree encodes not just how those 

components are used within the more complex 

overall behavior, but also how they can be trained in 

the same environment. 

When a Behavior Tree is instantiated as the controller 

for a particular agent, its leaf node behaviors are 

bound to that agent, and the tree is recursively 

updated with each simulation step.  Each sub-tree that 

is updated returns a Success, Failure or Running 

condition that impacts the traversal of the parent 

node.  In many Behavior Tree systems, the tree nodes 

share data on a common blackboard contained by the 

agent.  For example, the Behavior Tree in Figure 4.1 

specifies a traveling behavior to a given target travel 

location. 

 

Figure 4.1: Behavior Tree for traveling to a given target 

location. 

The root node is a Sequence.  Sequences update their 

children in order until one returns Failure or they all 

return Success.  If a child returns Running, the 

sequence returns Running, and on the subsequent 

update, traversal resumes with that child.  The 

Generate Path behavior in the example procedurally 

generates a path from the agent’s location to the 

travel target location (stored on the blackboard) or 

returns Failure if no such location exists or it cannot 

be reached.  The next child of the Sequence is a sub-

tree which is a path following behavior.  Its root node 

is a Loop.  Loops update each child in order until one 

returns Failure, looping back to the beginning each 

time the last child returns Success.  This type of Loop 

has a special conditional child, shown as a diamond, 

which is updated at the beginning of each loop.  If 

that child returns Success, the Loop returns Success, 

otherwise it continues on.  The Set Waypoint 

behavior in the example expects an active path on the 



blackboard, and procedurally sets the next point in 

that path as the immediate movement target location 

(distinct from the travel target location).  The Move 

behavior procedurally moves the agent incrementally 

closer to that immediate target with each location, 

until it arrives and returns Success.  The At Target 

behavior is an environmental condition that checks to 

see if the agent is at the travel target location.  If so, it 

returns Success, the Loop returns Success and the 

Sequence returns Success.  Otherwise, the Loop 

continues to set and achieve waypoints along the 

way.  This example shows how the composition 

structure controls the reusable leaf behaviors, 

including choices like how often the path should be 

regenerated, how waypoints are handled and when 

the target location should be checked. 

However, the problems of brittleness and 

predictability are the same as for other hand-authored 

scripts.  To increase variation, we use machine 

learning to refine individual behaviors within the 

context of the overall behavior.  We implement this 

with a Decorator node.  Decorators have a single 

child and are used to control that child or manipulate 

its return value.  In Figure 4.2 we have placed a 

Learn on Success Decorator over the Move behavior. 

 

Figure 4.2: Learning Behavior Tree for traveling to a 

given target location and learning to set waypoints. 

Whenever the Move returns Success, indicating it has 

reached a waypoint, this Decorator invokes a learning 

routine on a modified Set Waypoint behavior.  To 

train the behavior, an agent is instantiated with this 

Learning Behavior Tree and the trace of movement 

data from a single player.  In a training episode, a 

target travel location is taken from the trace, and the 

learning agent attempts to travel there by updating 

the Behavior Tree.  The learning method is defined 

by a tuple (L,E,F,M) where L is the set of possible 

locations, E is the error function between the current 

waypoint location set by the behavior l1 and the 

current location actually traveled to in the training 

data l2 (where l1, l2   L), F is a function that returns 

a set of environmental features and M is a learning 

model that is trained on E, F to estimate l2 given l1, 

F.  The placement of the Decorator within the 

structure of the tree specifies the frequency and 

conditions under which the learning should be 

invoked.  Once trained, the Set Waypoint behavior 

perturbs each waypoint stochastically according to 

the probabilities learned by M, to attempt to create 

more human-like behavior. 

5. Experimental Setup 

The goal of these experiments is to evaluate the 

effectiveness of the Learning Behavior Tree on the 

task of simulating a human-like population of players 

in a virtual world.  Specifically, modeling travel 

between points of interest with aggregate similarity to 

player data.  Player locations have been abstracted to 

a 2-d grid overlaying the world map, as is common in 

path-finding algorithms. 

Each experimental condition involves a certain set of 

player movement traces (the data set) and a certain 

agent control model (the model).  The data set is 

divided into equal training and testing sets.  For 

training, an agent using the model is created for each 

trace in the training data set. Those agents are all 

simulated to the length of the longest trace in the set, 

resulting in a single trained model of the entire 

population (not individual behavior).  Then, a set of 

agents using the trained model is created.  This set 

has the same number of agents as traces in the testing 

data set, but does not use the data itself.  The agents 

are simulated, and the resulting population dynamics 

are compared against a simulation of agents replaying 

the testing player traces (the Reference simulation). 

Three agent control models are investigated.  The 

Learning Behavior Tree agent control model works 

as described in the prior section.  In these 



experiments, it uses a Naïve Bayes classifier for M, 

appropriate for the small size of the data set.  The set 

of player locations L has been abstracted to grid 

membership.  The error function E relies on the path 

generated by the Generate Path behavior to transform 

grid locations taken from the training data into path-

relative steps: forward along the path, right, left or 

back.  The feature extractor F generates Boolean 

features for those relative positions indicating 

whether they have already been visited or not during 

the current travel segment.  The second agent control 

model used is the Learning Position/Goal model.  It 

uses the same Naïve Bayes classifier, but without the 

structure and functionality of the Behavior Tree.  It 

simply trains on the current position, the goal 

position and the visited state of the adjacent cells, 

labeled with the absolute location of the next cell 

moved to in the training trace.  In testing, the next 

step is chosen stochastically based on the learned 

probabilities.  The third agent control model used is 

the Training Set model, which simply replays a trace 

from the training set. This model is used to establish 

a baseline of how similar the training and testing 

populations are, according to the metrics used. 

To measure the similarity between two agent 

simulations, we compute the distributional similarity, 

the difference in path length and the difference in 

percent revisits.  Distributional similarity is a 

measure of how similarly the two populations are 

distributed throughout the world.  From a player 

point of view, this is whether the crowds are where 

they are expected to be.   For a single step in the 

simulation, the error for population distribution is 

calculated as the number of agents in the Reference 

simulation that are not matched (by location) by an 

agent in the simulation being tested.  The test and 

Reference simulation always have the same number 

of agents.  For the set of Reference agents    and the 

population distribution function D that returns the 

number of agents in the specified grid cell i, the 

single step error formula is given in (1).  For entire 

simulation runs, the mean percentage error over all 

steps is reported. 

 

 
                          

 

   

 (1) 

 

Path length and revisits are taken as local measures of 

how similar the travel segments in the test simulation 

are to those in the Reference simulation.  Because 

individual agents in the former are not mapped to 

individual agents in the latter, the total path length 

and the total percent of cells revisited (within a travel 

segment) for an agent are averaged over all the agents 

in a simulation.  The difference for that run is simply 

the difference between test and Reference.  For the 

set of Reference agents    and the set of test agents 

A, and the function p that returns the total path length 

for an agent, the formula for the average path length 

difference for a simulation run is given in (2). 

 

 
   

 

 
     

  

 

   

  
 

 
      

 

   

 (2) 

 

For the set of Reference agents    and the set of test 

agents A, and the function r that returns the total 

percent of cells revisited for an agent, the formula for 

the percent revisited difference for a simulation run is 

given in (3). 

 

 
   

 

 
     

  

 

   

  
 

 
      

 

   

 (3) 

 

In experiment 1, the training and testing sets are 

randomly, equally divided out from a single data set.  

The results from the Training Set model provide a 

baseline of normal variation between human players 

performing the same tasks in the same area.  We 

predict that the Learning Behavior Tree and Learning 

Position/Goal models will perform at least as well 

according to our similarity measures.  To provide 

evidence of generality, three data sets are used in all 

experiments: the A set, the B set and the two 

combined (All). 

In experiment 2, the sample data is divided in half 

longitudinally, with the earlier half for training and 

the later half for testing.  This tests the models on the 

same population in the same area performing 

different (later) tasks.  The results from the Training 

Set model for distributional similarity and path length 

are only interesting in establishing how much spatial 



overlap there is in the early and late tasks.  We 

predict that the Learning Position/Goal model will 

likewise show poor performance in those two 

metrics, due to its learning of specific locations and 

goals that only partially overlap from training to 

testing.  We predict that the Learning Behavior Tree 

model will maintain performance relative to 

experiment 1, due to its learning relative to the 

Generate Path behavior.  To provide evidence of 

generality, three data sets are used: the A set, the B 

set and the two combined (All). 

In experiment 3, the training and testing sets are 

taken from different populations of players 

performing similar tasks in different map areas.  The 

agents are trained on the A data set and tested on the 

B data set, then vice-versa.  This tests the 

effectiveness of the Learning Behavior Tree when 

trained on one set of players in one setting, then used 

in a different setting with different players.  Because 

the areas are completely different, the Training Set 

and Learning Position/Goal models cannot work in 

this experiment.  We predict that the Learning 

Behavior Tree model will continue to maintain 

performance. 

6. Results 

Because the two learning models are stochastic, 1000 

trials were performed for each experimental result 

and the means and standard deviations are reported. 

The results for experiment 1 are shown in Table 1 for 

the three data sets A, B and All, and the three agent 

control models Learning Behavior Tree (Beh. Tree), 

Learning Position/Goal (Pos/Goal) and Training Set 

(Train. Set).  The metrics are the mean percentage 

error of distributional similarity between the test and 

Reference populations (Dist), the difference in 

average total path length of the test agent population 

vs. the Reference agent population (PathLen) and the 

difference in average percent revisits of the test agent 

population vs. the Reference agent population 

(Revisit).  Smaller absolute magnitudes are better. 

For all three data sets, the Learning Behavior Tree 

model outperforms the other models in the 

distributional similarity metric.  The differences are 

statistically significant, given the very high number 

of trials, but seem unlikely to correspond to 

perceivable differences in crowd similarity.  Rather, 

the results confirm the prediction that the learning 

models match the baseline for distributional 

similarity.  The Training Set results for path length 

indicate that different players take widely different 

paths, so while the learning models underperform in 

terms of magnitude, the significant overlap suggests 

that the differences may not be observable.  What is 

clear is that the Learning Behavior Tree model takes 

more direct paths while the Learning Position/Goal 

model wanders more.  Similarly, the Training Set 

results for revisits indicate a nearly 10% variance in 

either direction for human players.  However, both 

learning models revisit substantially less than human 

players, most likely due to their goal focus. 

 
Dist PathLen Revisit 

Data Set A 

Beh. Tree 0.32±0.04 -5.07±3.86 -0.18±0.06 

Pos/Goal 0.37±0.06 4.31±3.73 -0.08±0.07 

Train. Set 0.35±0.05 -0.99±4.81 0.01±0.09 

Data Set B 

Beh. Tree 0.30±0.05 -2.45±3.94 -0.15±0.07 

Pos/Goal 0.33±0.07 0.98±4.15 -0.09±0.07 

Train. Set 0.31±0.07 -1.84±4.6 0.01±0.09 

Data Set All 

Beh. Tree 0.27±0.04 -3.64±2.83 -0.16±0.05 

Pos/Goal 0.33±0.04 5.24±3.32 -0.08±0.05 

Train. Set 0.33±0.07 -0.66±3.43 0.01±0.07 

Table 6.1: Experiment 1 results, testing and training for 

each data set randomly divided in half 

 

The results for experiment 2 are shown in Table 6.2, 

again for the three data sets, the three agent control 

models and the three metrics.  The results of the 

Training Set model show that the crowd distribution 

and path lengths are quite dissimilar between the 

earlier and later halves of the data, while the revisits 

vary between the A and B sets but are in a similar 

range to experiment 1.  There is, of course, no 

variation in the Training Set results (σ=0) since there 

is only one set of training traces to replay.  As 

predicted, the Learning Position/Goal model 

performs much more poorly in all metrics.  The long 

path lengths and high positive difference in revisits 

support the intuitive idea that since the training was 

only partially applicable, it is randomly wandering a 



lot.  The results show that the Learning Behavior 

Tree model maintains its level of performance, and 

even improves, in this scenario. 

 
Dist PathLen Revisit 

Data Set A 

  
Beh. Tree 0.24±0.02 -0.93±1.51 -0.16±0.02 

Pos/Goal 0.54±0.02 24.41±1.04 0.33±0.02 

Train. Set 0.61±0 -22.1±0 -0.14±0 

Data Set B 

Beh. Tree 0.26±0.03 2.55±1.4 -0.01±0.04 

Pos/Goal 0.75±0.02 16.94±0 0.29±0.02 

Train. Set 0.51±0 -11.12±0 0.15±0 

Data Set All 

Beh. Tree 0.21±0.02 2.52±1.23 -0.04±0.02 

Pos/Goal 0.71±0.01 32.52±0.64 0.25±0.01 

Train. Set 0.56±0 -17.05±0 0.01±0 

Table 6.2: Experiment 2 results, training for each data 

set taken longitudinally from the first part of the 

simulation time and testing from the second part. 

 

The results for experiment 3 are shown in Table 6.3 

for the Learning Behavior Tree model training on 

data set A and testing on data set B and vice versa.  

The other models have nearly 100% error margins, as 

expected, and are not shown.  These results confirm 

that the Learning Behavior Tree model maintains its 

level of performance even across areas and tasks. 

Train/Test Dist PathLen Revisit 

A/B 0.2±0.01 0.91±1.34 -0.13±0.02 

B/A 0.22±0.01 -6.49±1.23 -0.17±0.02 

Table 6.3: Experiment 3 results, Learning Behavior 

Tree trained on data set A/B and tested on the other. 

 

7. Conclusion and Future Work 

In this work, we have proposed the use of Learning 

Behavior Trees to provide context and structure to 

machine learning for the task of simulating a 

population of human players in a virtual world.  This 

approach seeks to create flexible agent controllers 

that combine human authored behaviors, such as path 

planning and moving through waypoints, with 

learned behaviors in a declarative control structure.  

These experiments provide evidence that such a 

controller can simulate a population of agents to 

show similarity to human movement behavior in a 

task-oriented virtual world.  Importantly, it maintains 

performance when testing with increasingly different 

data from training.  However, it does not show as 

strong similarity by the local metric of revisits. This 

evidence does not claim to prove that the Behavior 

Tree is necessary to this model.  Clearly, a finite state 

machine or ad hoc code could be used.  Rather, we 

propose that the advantage to Learning Behavior 

Trees is the ability to explicitly situate training and 

execution of learned behaviors within arbitrarily 

complex, human-authored behaviors.  We will next 

be evaluating the effectiveness of this approach for 

multiple points of learning within the tree, such as 

simultaneously learning to simulate travel, decisions 

regarding which tasks to pursue, and decisions 

regarding when to interact with other entities.  We 

will also pursue human testing for qualitative 

evaluation of similarity. 

8. Acknowledgements 

This material is based upon work supported in part by 

the U.S. Army Research Laboratory and the U.S. 

Army Research Office under grant number W911NF-

11-1-0150. 

9. References 

Bainbridge, W.S. (2007). The Scientific Research 

Potential of Virtual Worlds. Science. Vol. 

317 no. 5837 pp. 472-476. 

Bakkes, S., Spronck, P., and van Lankveld, G. 

(2012). Player Behavioral Modelling for 

Video Games. Entertainment Computing, 

Vol. 3, Nr. 3, pp. 71–79. 

Best, B., Lebiere, C., & Scarpinatto, C. (2002). A 

model of synthetic opponents in MOUT 

training simulations using the ACT-R 

cognitive architecture. In Proceedings of the 

Eleventh Conference on Computer 

Generated Forces and Behavior 

Representation. Orlando, FL. 

Champandard, A. J. (2008). Getting started with 

decision making and control systems. AI 

Game Programming Wisdom 4. Boston, 

Massachusetts: Course Technology. 257-

263. 



Dickey, M.D. (2005). Three-dimensional virtual 

worlds and distance learning: two case 

studies of Active Worlds as a medium for 

distance education. British Journal of 

Educational Technology. Volume 36, Issue 

3, pages 439–451. 

Galway, L., Charles, D. and Black, M. (2008). 

Machine learning in digital games: a survey. 

Artificial Intelligence Review. Volume 29, 

Number 2, 123-161. 

Geisler, B. (2004). Integrated machine learning for 

behavior modeling in video games. In: Fu D, 

Henke S, Orkin J (eds) Challenges in game 

artificial intelligence: papers from the 2004 

AAAI workshop. AAAI Press, Menlo Park, 

pp 54–62. 

Gorski, N. and Laird, J. (2006). Experiments in 

Transfer Across Multiple Learning 

Mechanisms.  In ICML Workshop on 

Structural Knowledge Transfer for Machine 

Learning. 

Henry, P., Vollmer, C., Ferris, B. and Fox, D. (2010). 

Learning to navigate through crowded 

environments. In Proceedings ot the 2010 

IEEE International Conference on Robotics 

and Automation, Anchorage Convention 

District, May 3-8, 2010, Anchorage, Alaska, 

USA 

Isla, D. (2005). Handling complexity in the Halo 2 

AI. In Proceedings of the GDC 2005. 

Gamasutra. 

Karpov, I.V., Schrum, J., Miikkulainen, R. (2012). 

Believable Bot Navigation via Playback of 

Human Traces. In Philip F. Hingston, 

editors, Believable Bots, 151--170, 2012. 

Springer Berlin Heidelberg. 

Marthi, B., Russell, S., Latham, D. and Guestrin, C. 

(2005). Concurrent Hierarchical 

Reinforcement Learning. In Proceedings of 

the Nineteenth International Joint 

Conference on Artificial Intelligence, 

Edinburgh, Scotland, UK, July 30-August 5. 

Schrum, J., Karpov, I.V. and Miikkulain, R. (2012). 

Humanlike Combat Behavior via 

Multiobjective Neuroevolution. In Philip F. 

Hingston, editors, Believable Bots, 119--

150, 2012. Springer Berlin Heidelberg. 

Shao, W., and Terzopoulos, D. (2005). Autonomous 

pedestrians. In SCA ’05: Proceedings of the 

2005 ACM SIGGRAPH/Eurographics 

symposium on Computer animation, ACM 

Press, New York, NY, USA, 19–28. 

Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., 

and Postma, E. (2006). Adaptive Game AI 

with Dynamic Scripting. Machine Learning, 

Vol. 63, No. 3, pp. 217-248. (Springer DOI: 

10.1007/s10994-006-6205-6) 

Thurau, C., Bauckhage, C., Sagerer, G. (2003). 

Combining self-organizing maps and 

multilayer perceptrons to learn bot-behavior 

for a commercial game. In Mehdi Q, Gough 

N, Natkin S (eds) Proceedings of the 4th 

international conference on intelligent 

games and simulation. Eurosis, pp 119–123. 

Togelius, J., Burrow, P. and Lucas, S.M. (2007). 

Multi-population competitive co-evolution 

of car racing controllers. Proceedings of the 

IEEE Congress on Evolutionary 

Computation (CEC), 4043-4050. 

Treuille, A., Cooper, S. and Popović, Z. (2006). 

Continuum Crowds. ACM Trans. Graph, vol 

25, pg 1160-1168. 

Wray, R., Laird, J., Nuxoll, A., Stokes, D. and 

Kerfoot, A. (2005). Synthetic Adversaries 

for Urban Combat Training. AI Magazine, 

Volume 26, Number 3. 

 

Author Biographies 

EMMETT TOMAI is an Assistant Professor in the 

Department of Computer Science at the University of 

Texas – Pan American.  He earned his Ph.D. from 

Northwestern University in computational 

understanding of natural language semantics.  His 

research interests include computational storytelling 

and narrative understanding through intelligent, 

believable agents in virtual worlds and video games. 

ROSENDO SALAZAR is an undergraduate in the 

Department of Computer Science at The University 

of Texas-Pan American.  He currently is a member of 

the Center of Excellence in STEM Education Student 

Research Program. 

ROBERTO FLORES is an undergraduate in the 

Computer Engineering program at the University of 

Texas Pan-American, and current member of the 

Center of Excellence in STEM Education Student 

Research Program. 


