An Evaluation of How Changes to the Introductory
Computer Science Course Sequence Impact Student
Success

Christine Reilly
Computer Science Department
University of Texas-Pan American
Edinburg, Texas 78539
Email: reillycf@utpa.edu

Abstract—Our university, as with many others throughout
the world, has a relatively low pass rate in the introductory
computer science courses. Over the course of more than fifteen
years, various changes have been made to the introductory course
sequence with the hope of improving student success. We describe
these changes and perform an initial analysis of student course
performance that finds little change in pass rates. We propose
new changes to the course sequence and to individual courses
within this sequence. These new changes are focused on increasing
student engagement and developing the problem solving skills
that are necessary for being a successful computer science major.
We propose pilot projects that implement these changes and
outline evaluation strategies for these pilot projects.

I. INTRODUCTION

Over the span of more than fifteen years, our Computer
Science department has made a number of changes to the
sequence and content of the introductory courses. Many of
these changes have been motivated by the faculty’s desire to
improve student success and learning outcomes, while other
changes have been motivated by institutional factors. Our
department is fairly typical in the fact that our courses change
over time and with the motivating factors for these changes
[1]-[5]. Various studies have found that computer science
faculty tend to use intuition and anecdotal evidence as the
motivation for their course changes. We acknowledge that
many of our changes have been based on these non—scientific
motivations, but now aim to evaluate the changes that have
been made and to use research to drive future changes.

We begin this paper by describing the evolution of the
introductory course sequence in our department over the past
fifteen years. Next, we evaluate the effects of these changes on
student success. We then discuss how other factors may impact
the success of our students. Finally, we present changes that
are in progress and outline our plans for evaluating the effects
of these changes.

II. OVERVIEW OF OUR COMPUTING PROGRAMS

Our university is a primarily undergraduate, state—
supported institution with an enrollment of more than 20,000
students. We are a Hispanic Serving Institution with over 90%
of these students being Hispanic. The majority of our students
are first generation college students. The university primarily

Emmett Tomai
Computer Science Department
University of Texas-Pan American
Edinburg, Texas 78539
Email: tomaie @utpa.edu

Laura M. Grabowski
Computer Science Department
University of Texas-Pan American
Edinburg, Texas 78539
Email: grabowskilm@utpa.edu

serves the local region, and the demographics of the university
are similar to those of the region.

The Computer Science Department at our university offers
an ABET accredited bachelor’s degree in Computer Science,
and master’s degrees in Computer Science and Information
Technology. The department also offers an ABET accredited
bachelor’s degree in Computer Engineering, in cooperation
with the Electrical Engineering Department. In Fall 2014,
we had 343 undergraduate Computer Science majors, 282
Computer Engineering majors, and 124 master’s students.

As is typical at many universities throughout the world [6],
our sequence of introductory computer science courses have a
high fail rate. Over a four and a half year period, we found
that on average both our CS1 and CS2 courses had a 60%
pass rate [7]. The instructors who teach these courses are
frequently examining methods for improving the pass rates.
In addition to making changes to the individual courses, we
also consider these courses as a sequence. In this paper, we
focus on the pipeline of introductory computer science courses
as a sequence and examine how changes in this sequence
impacts student performance. We begin this discussion with a
presentation of the recent history of our introductory computer
science course sequence.

A. History of Computer Science Introductory Courses

When the department was formed in the mid-1990’s we
initially offered a three—hour CS1 course that focused on
introducing programming concepts and a three—hour CS2
course that provided an introduction to data structures. The
core objectives of our CS1 and CS2 course remain largely the
same today as they were almost 20 years ago. One change
is that now CS1 is a four credit-hour course (three hours of
lecture, and one credit-hour for a 3 hour seat time lab). The
major changes during the past 20 years have been to the course
sequence, as described in detail below. These changes included
the introduction of a course in-between CS1 and CS2, then the
removal of this course along with the introduction of a CS0O
course.

In 1998, a three-hour course called “Foundations of Com-
puter Science” (course number CSCI 1381 at our university)
was introduced and was placed in between CS1 and CS2 in

the course sequence. One of the goals of this course was to
include the breadth of computer science early in the sequence
of courses for Computer Science majors, while another goal
was to help students better transition to the level of abstraction
required for CS2. The impacts of CSCI 1381 on student
learning outcomes and success in CS2 were analyzed after
CSCI 1381 had been offered for three years. It was found that
students reported that they achieved the learning outcomes, but
there was not a clear improvement in performance in CS2 [8].
Some of the lack of improvement in CS2 performance was
attributed to students not taking the courses in the proper se-
quence. Additionally, the impacts of CSCI 1381 likely changed
over time because the number of programming assignments in
CSCI 1381 were increased following the first few semesters
that the course was offered.

In the late 2000’s, the Computer Engineering program
began offering a Bachelor’s degree in Computer Engineering.
This program is jointly administered by the Computer Science
and Electrical Engineering departments. Most of the Computer
Engineering courses are cross—listed with either Computer
Science or Electrical Engineering courses. The Computer En-
gineering majors take the same CS1 and CS2 courses as Com-
puter Science majors. However, CSCI 1381 was not included
in the Computer Engineering degree program. Therefore, upon
reaching CS2, the Computer Science and Computer Engineer-
ing majors had different levels of programming experience.

In Spring 2011, a one-hour “Introduction to Computer
Engineering” (course number CMPE 1101) was introduced
as a requirement for the Computer Engineering major and
was set as a pre-requisite for CS1. The goals and content
of CMPE 1101 are discussed below. One of the reasons
for introducing CMPE 1101 was to more closely align the
Computer Engineering major to the other engineering majors
within our college that already had a one-hour introductory
course.

The final change to the introductory course sequence came
in Fall 2011 when CSCI 1381 was phased out and a one-hour
“Introduction to Computer Science” (course number CSCI
1101) was introduced. This change was made to more closely
align the beginning of the Computer Science major courses
with the Computer Engineering major courses.

We also note that some of our Computer Science and Com-
puter Engineering students have transferred into our university
from the local community college. The community college
offers a three—hour version of CS1 and continues to offer
an equivalent course to CSCI 1381. However, the community
college does not offer a course that is equivalent to CSCI 1101
or CMPE 1101. For this study, we focus on the students who
began the introductory computer science course sequence at
our university, but we acknowledge that some of the students
in our CS2 course took CS1 and CSCI 1381 at the local
community college.

B. Description of Our CSO Courses

Currently, the first class in the sequence of introductory
computer science courses for students who major in Computer
Science is “Introduction to Computer Science” (CSCI 1101).
The first class in the sequence of introductory computer science
courses for students who major in Computer Engineering is

TABLE 1. Toprics COVERED IN CSCI AND CMPE 1101

Number representation

Unsigned binary numbers
Hexadecimal representation
Signed binary numbers

e
.
.
. Binary floating point representation

and sound

Using bits to represent text, i
Digital logic

. Boolean algebra
. Circuits

Computer architecture, machine language, and program representation
Algorithms and problem solving

. Programming using LEGO Mindstorms
. Overview of searching and sorting algorithms

Miscellaneous topics

. Operating systems
. The Internet and the World Wide Web

“Introduction to Computer Engineering” (CMPE 1101). CMPE
1101 was first offered in Spring 2011, and CSCI 1101 was first
offered in Fall 2011. Initially, the courses were very similar
and they remain mostly similar to this day.

The prerequisite for CS1 is either CSCI 1101 or CMPE
1101, along with a co-requisite of college algebra. Both CSCI
1101 and CMPE 1101 are one credit-hour laboratory courses
that have two and one half hours of seat time per week. They
are typically offered on a two—day per week schedule for one
hour and fifteen minutes per day.

CSCI 1101 and CMPE 1101 were started following a
similar pilot course [9]. Much of the computer science breadth
material from CSCI 1381 was carried over to CSCI 1101
and CMPE 1101. These courses also include programming
assignments using the LEGO Mindstorms robots. The LEGO
Mindstorms programming environment has an intuitive drag
and drop block programming interface. This environment
allows students to gain experience with basic programming
concepts and control structures without the frustration of
syntax errors. The goal of the programming component of
CSCI 1101 and CMPE 1101 is to provide an introduction
to programming concepts so that students already have some
familiarity with these concepts when they reach CSI1.

Table I shows an outline of the topics that are covered
in both CSCI 1101 and CMPE 1101. The Computer Science
course tends to spend a bit more time on algorithms and
programming, while the Computer Engineering course tends
to spend a bit more time on number representation.

The class time for both CSCI 1101 and CMPE 1101 is
approximately evenly split between traditional lecture and time
that students spend working on the lab assignments. Because
these are scheduled as laboratory classes, the goal is for
students to be able to complete the bulk of the coursework
during class time.

A typical section of CSCI 1101 or CMPE 1101 has between
twenty and forty students. Because the class is held in a
computer lab, enrollment is absolutely capped at a maximum
of 45 students. In addition to the full-time faculty instructor,

TABLE II. PASS RATE IN CS1 BASED ON WHEN 1101 1S TAKEN

When Took CMPE Number of Students Percent Passing CS1
or CSCI 1101

Never took 1101 397 60%

Prior to CS1 155 54%

Concurrently with CS1 163 63%

After CS1 87 55%

CMPE 1101 typically has one or two graduate student teaching
assistants assigned to each section in order to assist during the
lab. Typically, CSCI 1101 has a full-time faculty instructor
plus an undergraduate student assistant.

III. IMPACT OF CHANGES TO COURSE SEQUENCE

We have performed an initial data analysis in order to
evaluate whether or not taking CSCI 1101 or CMPE 1101 helps
students perform better in CS1. This analysis is summarized
in Table II. The data set includes all students who took CS1
at our university between Fall 2009 and Fall 2014, a total of
802 students.

The column titled “When Took CMPE or CSCI 1101~
indicates when the student took the 1101 course in relation
to when they took CS1. The first row, “Never took 1101~
is likely to mostly contain students who took CSI1 prior to
the introduction of 1101. Students in the row labeled “Prior
to CS1” are those who took 1101 in some semester prior
to the semester when they took CS1. The students labeled
“Concurrently with CS1” are those who took 1101 and CS1
in the same semester. The last row, labeled “After CS1” are
students who took 1101 in a later semester than they took CS1.

The results shown in Table II are somewhat counterintuitive
and we hypothesize that the results are indicating the impact
of factors other than the 1101 course on student performance
in CS1. These initial results show that students who take the
1101 course during the same semester as they take CS1 have
a higher pass rate in CS1 than the students who take 1101
prior to taking CS1. The Computer Science department and
Computer Engineering program are typically willing to give
permission for students to take 1101 and CS1 concurrently for
those students who have prior programming experience or have
other indicators that they are well prepared for CS1. Therefore,
the students who are taking 1101 and CS1 concurrently are
likely to be higher performing students in general.

Another observation of the data presented in Table II is
that the pass rate in CS1 for students who never took 1101 is
not remarkably different from the pass rate of students who
did take 1101. One of the goals of having a CSO-type course
is to better prepare students for CS1. It does not appear that
our 1101 course is currently meeting that goal.

At this point, we could dive deeper into the data that we
have on grades in these courses. We could also analyze whether
removing CSCI 1381 (the course that was once taken between
CS1 and CS2) has had any impact on student performance
in CS2. However, our intuition is that there are other factors
that are having a greater impact on the success of students in
the pipeline of introductory computer science courses than a
simple analysis of performance from one course to the next can
reveal. Also, we think it is unlikely that we could reintroduce a
course in—between CS1 and CS2. Therefore, we have decided

to focus the remainder of this paper on taking a closer look
at some of the other factors that may influence the success
of students in our courses, as well as considering how we
could better leverage our current courses to better meet the
educational needs of our students.

IV. IMPACT OF OTHER STUDENT SUCCESS FACTORS

As was presented in Section II, the majority of students
at our university are first generation college students who
attended high school in the Rio Grande Valley region of South
Texas. This region has one of the highest poverty rates in the
United States, and is also one of the most rapidly growing
regions of the country. Students enter our university with a
wide range of levels of college readiness.

The faculty in our department have informally noted that
many of the students who do not pass our courses are not fully
engaged in the course. These students typically have poor class
attendance and do not complete all of the required work for
the course. Of course, if a student does not turn in the required
course work, they will not earn the points necessary for passing
the course.

In this section, we present a snapshot of the amount of
coursework that is completed by students who fail CMPE 1101
and CS1. We also reflect on various issues that affect student
engagement. In Section V we will discuss ideas for changes
that may increase student engagement.

We compiled data on the percent of assigned coursework
that was completed by the students who failed CMPE 1101
and CS1 over a number of semesters. In CMPE 1101, this
assigned coursework is the lab assignments that are worth
50% of the course grade. Figure 1 shows the fraction of the
students who failed CMPE 1101 (on the y—axis) that completed
various amounts of the required work (on the x—axis). CS1
has two types of assignments. The lab assignments, which
are intended to be completed during the weekly lab period,
are worth 30% of the course grade. There are also larger
programming assignments that are completed throughout the
course of the semester and are worth 20% of the course grade.
Figure 2 shows the fraction of the students who failed CSI
(on the y—axis) that completed various amounts of the labs and
programming assignments (on the x—axis). We see in Figures 1
and 2 that a few of the students who fail do complete all
or almost all of the required work. However, the majority of
students who fail these courses are completing a small amount
of the required coursework.

We understand that there are many factors that may impact
an individual student’s decision of whether or not to complete
required coursework. Because most of the students in these
courses are lower—division students, they may have not yet
developed good time management skills. From conversations
with our students, we have learned that some of them are
balancing other demands on their time in addition to school.
Some students work more than 20 hours per week, or have
family responsibilities that require a good amount of their time.
The combination of work and family commitments with poor
time management skills can make it difficult for a student to
complete the coursework. Another factor that may affect many
of our students is that first-generation college students are
sometimes hesitant to ask for help, may not recognize when

Completion of Assigned Work by Students who
Failed CMPE 1101

n
o

0.25
2
$ 02
T
=]
& 015
]
c 01
(<]
B
® 0.05
fre
0
o o o o o o o o o o o
>) 53} ~ © o) <) « « I
Aoy oY Yo% owoyoyoy e
° Y Y Y VoY VoY S
o o o o o o o o i
o0 ~ o wn < ™ o~ -
Percent of Assigned Work (c) Completed
Fig. 1. Completion of Assigned Work by Students who Failed CMPE 1101
Completion of Assigned Work by Students
who Failed CS1
w» 0.35
=
% 0.3
S 0.25
]
w 0.2
°
c 0.15
o
§ 01 O Labs
= 0.05
v o El I:I 0o m B Programs
o o o o o o
[<)] a o0 () n
v Vv A\ v
(8] o o (8]

c>=
=c<70
=c<40
c<30
c<20

0<c<20

80<
70 <
60 <
50 <
40 <
30<
20<
10<

Percent of Assigned Work (c) Completed

Fig. 2. Completion of Assigned Work by Students who Failed CS1

they need to ask for help, or may not be aware of the various
sources of help that are available.

Therefore, we propose that the most effective approach for
improving performance in our introductory computer science
courses is to focus on developing and encouraging a collabora-
tive atmosphere that provides many opportunities for students
to become engaged in the learning process. We also propose
the need to focus on the overall concepts and skills that are
required for computer science and computer engineering, as
opposed to focusing on small details.

V. IDEAS FOR MOVING FORWARD

Over the past several years, the Computer Science faculty
have often discussed how we could redesign the courses in the
introductory sequence to improve student success. Suggested
changes involve revisions to the course sequence as a whole
and to individual courses. The various ideas for changes
demonstrate how the Computer Science faculty continue to
struggle with identifying the core issues that affect student suc-
cess in Computer Science and Computer Engineering courses.

During many informal discussions, our Computer Science
faculty have identified common issues among students that
appear to lead to diminished student success in computer
science, both at the introductory level and downstream. These
issues include a general lack of problem solving skills, low
engagement and motivation, lack of participation in class
and in completing assignments out of class, and difficulty
with varying levels of abstraction. These issues are certainly
not unique to our department, university, or program. Many
university faculty members express concerns about student
engagement [1], and the growing emphasis on active learning
reinforces the importance of drawing students into an active
learning process.

In this section, we first describe ideas for changes to the
sequence of introductory computer science courses. Then we
discuss specific changes to the CSO and CS1 courses that
are currently being piloted or will be piloted in an upcoming
semester.

A. Changes to the Pipeline

Several of our faculty members advocate reviewing the en-
tire introductory course sequence (CSCI or CMPE 1101, CS1,
CS2) by first identifying what the sequence should accomplish,
as opposed to thinking about the courses in isolation. This
type of revision is far more sweeping than the incremental
changes that have been made over time by individual faculty
members. Consequently, such alterations to the introductory
sequence have not yet been implemented.

One suggested approach to these far-reaching revisions to
our introductory sequence focuses on improving engagement
and problem solving skills. With this approach, CSO (i.e.,
CSCI and CMPE 1101) will focus on problem solving and
broad ideas, providing a better foundation for programming
in CS1 and CS2. Some details of proposed changes to the
content of CSO are provided below. In this redesign, the CS1
course will concentrate on enhancing problem solving skills
and introducing core programming concepts. Even though the
existing CS1 course content includes all the core programming
concepts, some faculty members feel that the students struggle
with the details of syntax in C++. It is also challenging
for faculty to devise interesting and engaging assignments
for CS1 using C++. In light of these two notions, we are
considering changing the language used in CS1 to Python,
with a switch to C++ in CS2. This approach has been tested
successfully at other institutions, with no significant difference
in performance between students who switched languages after
CS1 and those who used C++ in both CS1 and CS2 [10].
Our reasons for considering using Python for CS1 include the
relative ease of use and reduced syntactic complexity of Python
as compared to C++, and the fact that the many libraries
available in Python enable students to execute more interesting
and engaging programming projects much sooner than students
writing in C++. In this revised course sequence, CS2 will
begin with a brief review of the CS1 content to introduce
C++ to the students, and then continue with much of the
current CS2 content (e.g., dynamic memory allocation, data
structures), retaining a focus on modular programming, with
nearly all considerations of object-oriented programming and
design addressed in an additional course. We have not yet fully
addressed how to deal with the impact of the proposed redesign

on downstream computer science courses, but a number of
possible solutions to these issues have been suggested and
we are confident that this is not a major stumbling block to
pursuing the revision of the introductory sequence.

B. Changes to CSO

Although the Computer Science department faculty have
not yet determined how extensively the introductory course
sequence should be modified, two faculty members who teach
CS0 are working on revisions to that course that can set the
stage for the larger revisions discussed above. The two faculty
members will collaborate on developing a new course structure
and course materials for CSO in Summer 2015, and will use
the revised course in two pilot sections in Fall 2015. We hope
to leverage existing collaborations with colleagues in social
sciences and education to design tools to measure the impact
of the revised course on student problem solving skills and
student engagement.

The modified course will revolve around three “big” ideas:
algorithms, the stored program concept, and social impacts of
computing. These three ideas provide a conceptual framework
for organizing the course content, and allow exploring ideas
that students will revisit time and time again in their future
course of study. The updated course will use a strong active
learning approach that encourages and rewards student involve-
ment. While these approaches and activities are not novel,
introducing more active learning in our CSO course will set the
stage for increased use of such approaches throughout courses
in the Computer Science department.

Algorithms is, without a doubt, a core concept in computer
science and engineering. Beginning the CSO course with
algorithms allows us to address topics such as problem solving
processes and paradigms, algorithm design and description,
and the notion of “one algorithm, many implementations, many
languages.” These ideas will be supported with hands-on class
activities. Problem solving approaches will be investigated
through games and puzzles. Creating and communicating
an algorithm clearly can be explored in engaging activities
such as building with Legos. The concept that one algorithm
can be executed many ways and with many programs will
be addressed by exercises such as implementing the same
simple algorithm using different tools (e.g., Scratch and Lego
Mindstorm robots). Placing algorithms at the start of the course
introduces important concepts, but also may promote student
interest and increase engagement in the course. With this topic,
we have the opportunity to have students do many game-like
activities early on and have them working with robots right
away in the course.

The stored program concept is critical to both programming
and the design of computing machinery. This core idea allows
us to address issues such as data representation, the instruction
cycle, and computer hardware components. Although this
topic appears much “drier” than the previous topic at first
glance, there are many activities available that deal with the
information in appealing ways.

CSO provides an ideal context for introducing the idea
of social impacts of computing. Although our students will
all take professional ethics courses as part of their degree
requirements, addressing the societal and cultural dimensions

of computing in the very first major course introduces a
discipline-centered perspective on those questions and under-
scores the importance of considering these issues. This topic
will allow us to address issues related to privacy, security,
and professional ethics in computer science and engineering.
We will also be able to explore sustainability as it relates
to computing. This topic is a particularly good opportunity
to provide content that is tailored for computer science or
computer engineering students. For example, the computer
engineering students may look at considerations in chip de-
sign that impact power consumption, while computer science
students may explore a variety of software applications that
support community sustainability and green technology.

C. Changes to CSI

In academic year 2014 — 2015, we began a pilot study in
some sections of our CS1 course with the goal of identifying
more effective interventions for student success. These inter-
ventions are part of a large—scale collaboration between the
College of Engineering and Computer Science and the College
of Science and Math at our university. The first initiative is the
development of a pre—test for CS1 that could identify students
who are at risk of failing. The second initiative is the use of
the pre—test data to inform intentional intervention with peer
mentors. An overview of these initiatives is provided below.
We plan to publish a separate paper that details the results
of these interventions following the conclusion of the current
study.

While the pre—test data is only preliminary, we have
already found interesting results that are driving the continued
development of the pre—test. Through two semesters, pre—test
questions on basic algebra and logic puzzles have had virtually
no correlation (correlation coefficient < 0.1) with exam scores
or final course scores. Samples of these questions are shown
in Table III. This was quite surprising, as the connection
between these questions and CS1 material seems intuitively
obvious. One question that does have a correlation with exam
scores or final course grades is a multi—equation word problem,
which had a correlation coefficient of 0.28 in the first semester
(n = 31) and 0.173 in the second semester (n = 41). This
problem is shown in Table IV.

In the second semester, we tried pre—test questions on
simple automation, showing a robot on a grid with pseudo—
code to move it up, down, left, or right with conditional checks
for blocked squares. We also included a question requiring
students to post a simple note on the course blog later that
day, in order to examine organizational skills. Those questions
showed more promise, with an overall correlation coefficient
of 0.30 (n = 41).

The second intervention we are piloting in some CSl1
sections is peer mentoring. An often overlooked element of
engaged learning is having effective life skills, including a
good social support network. A student can be interested and
have every intention of learning, but fail to manage the process
and fall short in their learning goals. This is particularly
true for lower—division students who are adjusting to college
life. For this reason, the mentoring initiative in this course
is focused on relationships, goals, plans, and progress rather
than traditional tutoring. Students met, in groups, with a peer

TABLE III. CS1 PRE-TEST QUESTIONS THAT DO NOT CORRELATE

WITH COURSE PERFORMANCE

1) Given the equation: z = 8 X (y + 3)
Let y = 2, then the value of = is ____

2) Given the equation: y = 8 X 2(x — 1)
Let y = 6, then the value of x is ____

3) Five cities got more rain than usual this year. The five cities are: Last
Stand, Mile City, New Town, Olliopolis, and Polberg. The cities are
located in five different areas of the country: the mountains, the forest,
the coast, the desert, and in a valley. The rainfall amounts were 12
inches, 27 inches, 32 inches, 44 inches, and 65 inches.

. The city in the desert got the least rain; the city in the forest
got the most rain.

. New Town is in the mountains.

. Last Stand got more rain than Olliopolis.

. Mile City got more rain tha Polberg, but less rain than New
Town.

. Olliopolis got 44 inches of rain.

. The city in the mountains got 32 inches of rain; the city on

the coast got 27 inches of rain.

Which city got the least amount of rain?
Where is Mile City located?

TABLE IV. CS1 PRE-TEST QUESTIONS THAT DO CORRELATE WITH

COURSE PERFORMANCE

John is three times as old as Greg, and Greg is half the age of Bob. Steve is two
times the age of John and Bob combined. If Steve’s age is 60, how old is Greg’s
older cousin Jane, who is 2 years older than Greg?

Jane’s age:

mentor to discuss their expectations, methods of preparation,
and results from the first 2—week exam in the course. Each
student was required to create a plan of study to go over with
the group indicating their expectations and actual experiences
with time spent in different course activities. While this is
initiative is in its early stages, we have some evidence that
students connected with each other for support networks and
followed up with the mentor for tutoring at a higher rate. Going
forward with this activity, we are developing an online web—
based tool for students to do simple weekly progress check—
ins, so that they can see how their expectations and effort
correlate to performance in class activities. The peer mentors
in academic year 2015 — 2016 will be working to roll out
that system with the students and evaluate its effectiveness in
keeping them engaged and actively planning for success.

VI. CONCLUSIONS

This paper marks a shift in the focus we are taking when
making changes to our introductory computer science courses.

Instead of focusing on small performance metrics, we are now
looking at the bigger picture of student success. The changes
that we are piloting in select sections of our CSO and CSl1
courses aim to increase student engagement and confidence.

We expect that our introductory computer science courses
and course sequence will continue to evolve over time. Our
goal is to make changes that are motivated by well-known
best practices in engineering education and to scientifically
evaluate the changes that we make. We are currently working
to achieve this goal by using pilot sections to test changes and
using initial results from these pilot projects to guide future
changes.

REFERENCES

[1] L. Barker and J. Gruning, “The student prompt: Student feedback and
change in teaching practices in postsecondary computer science,” in
Proceedings of the 2014 Frontiers in Education Conference, Madrid,
Spain, October 2014.

[2] L. Barker, C. L. Hovey, and J. Gruning, “What influences cs faculty to
adopt teaching practices?” in Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, Kansas City, MO, USA,
March 2015.

[3] S. Fincher, B. Richards, J. Finlay, H. Sharp, and I. Falconer, “Stories
of change: How educators change their practice,” in Proceedings of the
2012 Frontiers in Education Conference, 2012.

[4] D. Fossati and M. Guzdial, “The use of evidence in the change making
process of computer science educators,” in Proceedings of the 42nd
ACM Technical Symposium on Computer Science Education, Dallas,
Texas, USA, March 2011.

[5] L. Ott, “Explorations in computing: Could this be the key to retention?”
in Proceedings of the 2014 Frontiers in Education Conference, Madrid,
Spain, October 2014.

[6] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory
programming,” SIGCSE Bulletin, vol. 39, no. 2, pp. 32-36, June 2007.

[71 C.F Reilly and E. Tomai, “An examination of mathematics preparation
for and progress through three introductory computer science courses,”
in Proceedings of the 2014 Frontiers in Education Conference, Madrid,
Spain, October 2014.

[8] P. Brazier, L. Grabowski, and G. Dietrich, “Closing the CS I - CS II
gap: A breadth-second aproach,” in Proceedings of the 2003 Frontiers
in Education Conference, 2003.

[9] L. M. Grabowski and P. Brazier, “Robots, recruitment, and retention:
Broadening participation through CS0,” in Proceedings of the 2011
Frontiers in Education Conference, 2011.

[10] R. J. Enbody, W. E. Punch, and M. McCullen, “Python CSI as
preparation for C++ CS2,” SIGCSE Bull., vol. 41, no. 1, pp. 116-120,
March 2009.

