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Abstract 
 
Understanding common sense reasoning about the physical 
world is one of the goals of qualitative reasoning research.  
This paper describes how we combine qualitative mechanics 
and analogy to solve everyday physical reasoning problems 
posed as sketches.  The problems are drawn from the Bennett 
Mechanical Comprehension Test, which is used to evaluate 
technician candidates.  We discuss sketch annotations, which 
define conceptual quantities in terms of visual measurements, 
how modeling decisions are made by analogy, and how 
analogy can be used to frame comparative analysis problems.  
Experimental results support the plausibility of this 
approach.  

Introduction 
Understanding common sense reasoning about the physical 
world is one of the goals that motivated qualitative 
reasoning (QR) research from the beginning.  Despite its 
success at capturing many important aspects of reasoning 
about technical domains, little progress has been made on 
applying QR ideas to common sense reasoning per se.  A 
key difference between common sense problems and 
reasoning in technical domains is breadth.  In domains such 
as electronics or thermodynamics, a small library of 
components and relationships between them suffice to 
describe the systems of interest.  This is not true for 
everyday reasoning, where the number of types of entities 
that can potentially be involved is at least in the tens of 
thousands.  A second important feature of common sense 
reasoning is robustness, by which we mean the ability to 
draw conclusions even with partial knowledge.  QR already 
provides one piece of the puzzle, by enabling natural 
conclusions to be drawn without detailed numerical 
information.  However, existing QR techniques tend to 
assume complete and correct domain theories, which are 
applied to construct situation-specific models as needed to 
solve a given problem.   By contrast, (1) mental models 
research [14] suggests that people's models are often 
incomplete and incorrect, and (2) psychological evidence 
suggests that people often miss opportunities to apply 
relevant principles in everyday life.  How then can we 
explain the robustness of common sense reasoning? 
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Forbus & Gentner [7] suggest that the use of analogy 
provides a missing piece of the puzzle.  Here we do not refer 
to cross-domain analogies (e.g., seeing heat as a liquid), 
which are rare, can be risky, and are prized precisely 
because good ones require considerable insight.  Instead, we 
focus on within-domain analogies, where a new situation is 
understood in terms of a prior example (e.g., seeing a person 
pushing a wheelbarrow as like another person pushing a 
different wheelbarrow, or a shopping cart).  The prior 
example might have been understood in terms of the 
person's domain theory, but it might have also been 
understood in terms of an explanation that is completely 
specific to that example (e.g., the stability of this building 
decreases as its height increases).  One is reminded of 
similar experiences, and the explanation of those 
experiences is applied to the current problem.   Common 
sense is learned via experience by accumulating examples. 
Examples can be used directly as analogs and generalized to 
form more abstract knowledge. 

Using sketches in common sense reasoning is a 
particularly good venue for exploring these ideas because 
sketches are concrete.  A sketch depicts a particular system, 
and general principles are articulated in terms of how they 
apply to this specific situation.  Sketches and diagrams are 
used heavily in teaching and learning about physical 
domains.  For example, their importance in physical 
thinking is indicated by the structure of the Bennett 
Mechanical Comprehension Test (BMCT), an examination 
used to evaluate applicants for technical positions.  BMCT 
problems consist of diagrams depicting physical scenarios, 
with multiple-choice questions about their qualitative 
properties.  The BMCT is extremely broad, including 
questions about statics, dynamics, heat, and electricity, all 
stated in terms of everyday situations.  The BMCT is also 
used by cognitive psychologists as an independent measure 
of mechanical aptitude and spatial ability.  In QR terms, 
BMCT problems can be divided into two aspects: model 
formulation and computing the answer from the model.  As 
indicated below, computing the answer can typically be 
done by existing QR techniques, with one or two 
extensions.  The most serious difficulty is in formulating the 
model.  The compositional modeling methodology [3, 21] 
assumes complete and correct domain theories, and says 
little about the mapping from structural descriptions to 
structural abstractions.  We claim that the problem of 
mapping from the broad vocabulary of entities and 
relationships used in the everyday world to a more refined 
set that can be used to describe conceptual models is central 
to understanding common sense reasoning. 



This paper describes a system we have constructed 
which solves problems from the BMCT, using the 
similarity-based qualitative reasoning model outlined above.  
It uses a new cognitive architecture, Companion Cognitive 
Systems [10], which is applying these ideas more broadly.  
Here we focus on three novel qualitative modeling ideas that 
were needed to build this system: (1) sketch annotations 
define conceptual properties in terms of visual quantities, 
(2) using analogy to apply abstractions and models to 
structural descriptions, and (3) using analogy to frame 
comparative analyses.  We start with a brief review to 
ground the discussion, and then describe each idea in turn.  
The overall architecture of the system is described next, 
followed by some experimental results.  We end with 
related work not mentioned elsewhere and a discussion of 
future work. 

Background 
Sketching is a powerful way to work out and communicate 
ideas.  The nuSketch model [11] takes sketching to be a 
combination of interactive drawing and conceptual labeling.  
While most sketch understanding systems focus on 
recognition, nuSketch systems are based on the insight that 
recognition is not necessary in human-to-human sketching.  
The sketching Knowledge Entry Associate (sKEA) [12] is 
the first open-domain sketch understanding system.  
Anything that can be described in terms of sKEA's 
knowledge base can be used in a sketch.  sKEA's knowledge 
base consists of a 1.2 million fact subset of Cycorp's Cyc 
KB1, which includes over 38,000 concepts, over 8,000 
relations, and over 5,000 logical functions.  We have added 
to that our own representations of qualitative physics, visual 
properties and relationships, spatial knowledge, and 
representations to support analogical reasoning, but the vast 
majority of the content that we deal with was independently 
developed. The breadth of this KB makes it an excellent 
platform for exploring common sense reasoning. 

Glyphs are the basic constituent of sketches.  A glyph 
consists of its ink, which indicates its visual properties, and 
its entity, which is the thing depicted by the glyph.  Entities 
can be instances of any of the concepts in the KB.  Sketches 
are further structured into bundles and layers.  In this paper 
all of the sketches involve only a single bundle, so we 
ignore bundles.  Layers decompose different aspects of a 
subsketch, e.g., two systems being compared side by side 
would be drawn in the same bundle, but each system on a 
different layer.  sKEA computes a variety of visual 
relationships between glyphs based on ink [23].  For 
example, RCC8 qualitative topology relationships [1] are 
computed for every pair of glyphs in a layer.   

We use Gentner's structure-mapping theory of analogy 
and similarity [13].  In structure-mapping, analogy and 
similarity are defined in terms of structural alignment 
processes operating over structured representations.  The 
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output of this comparison process is one or more mappings, 
constituting a construal of how the two entities, situations, 
or concepts (called base and target) can be aligned.  A 
mapping consists of a set of correspondences, a set of 
candidate inferences, and a structural evaluation score.  A 
correspondence maps an item (entity or expression) from 
the base to an item in the target.  A candidate inference is 
the surmise that a statement in the base might hold in the 
target, based on the correspondences.  The structural 
evaluation score indicates overall match quality.   

We use two cognitive simulations based on structure-
mapping theory here.  The Structure-Mapping Engine 
(SME) does analogical mapping [2]. SME uses a greedy 
algorithm to compute approximately optimal mappings in 
polynomial time [8].  The base and target descriptions can 
be pre-stored cases, or dynamically computed based on 
queries to a large knowledge base [19].  MAC/FAC [9] 
models similarity-based retrieval.  The first stage uses a 
special kind of feature vector, automatically computed from 
structural descriptions, to rapidly select a few (typically 
three) candidates from a large case library.  The second 
stage uses SME to compare these candidates to the probe 
description, returning one (or more, if they are very close) 
of them as what the probe reminded it of.  As performance 
systems, both SME and MAC/FAC have been used 
successfully in a variety of different domains, and as 
cognitive models, both have been used to account for a 
variety of psychological results [6].   

Sketch Annotations 
In everyday sketching, people annotate sketches of physical 
entities with conceptual information that would not appear 
in the actual situation.  In architectural drawings, 
annotations indicate distances between walls and the widths 
of windows.  In sketches explaining principles, annotations 
indicate important properties, such as physical quantities 
(e.g., width of the base of a ladder) and where forces are 
applied.  We introduced annotation glyphs to provide this 
capability in sKEA.  Like other glyphs, an annotation glyph 
consists of its ink and the entity it is representing.  However, 
annotation glyphs also refer to one or more other glyphs in 
the sketch, depicting the entity (or entities) that they are 
providing information about.    We call these the references 
for the annotation glyph.   

We have found three kinds of annotation glyphs useful 
to date.  Linear annotations indicate linear distances, either 
along a single reference or between two references.  Two 
special subclasses of linear annotations are X-coordinate 
and Y-coordinate annotations, which refer to the projection 
of the measurement onto the appropriate axis.  Force 
annotations indicate where, and in what direction, a force is 
applied to the reference.  Rotational annotations indicate the 
references direction of rotation.  Figures 1a and 1b illustrate 
each type of annotation.   



Annotation glyphs express relationships about their 
reference(s) in three ways.  Force annotations have their 
direction and application surface computed from their ink 
and their referenced glyphs.  Rotational direction 
annotations assume qualitative rotational motion 
information about the reference.  Finally, linear annotations 
compute a distance measurement using anchor points on the 
reference.  Anchor points are used to specify which parts of 
the reference(s) that the annotation is tied to.  Each glyph 
has nine anchor points: Its centroid, the rightmost top, 
leftmost top, top rightmost, and so on clockwise around the 
glyph.  Anchor points provide symbolic descriptions that 
can be projected as candidate inferences from an example to 
a new situation (e.g., the distance from the left bottommost 
point to the right bottommost point of a reference). 

Annotation glyphs create visual quantities that can be 
linked to conceptual quantities in a concept map interface 
attached to sKEA.  For example, in describing stability of a 
building, one wants to say that the stability of the building 
(a continuous conceptual quantity) decreases as its height (a 
continuous visual quantity) increases.  Annotation glyphs 
allow us to do this by defining visual quantities in terms of 
measurable properties of glyphs.  These visual quantities 
can then be linked in situation-specific causal models to the 
conceptual quantities.  These statements are made using a 
concept map interface.  Every entity and quantity in the 
sketch automatically becomes available in the concept map, 
so that other statements can be made about them.  For causal 
models, we use qualitative process theory [5], specifically 
the notion of influences.  In this case, the stability of the 
building is ∝Q- the height of the building.  These example-
specific statements can be applied by analogy to other 
situations, thus providing a means of formulating models 
without a complete and correct domain theory. 

Qualitative Mechanics 
Qualitative mechanics (QM) concerns the same material as 
traditional mechanics, e.g., the effects of energy and forces 
on bodies, but from a qualitative perspective.  We assume 
that people learn many aspects of qualitative mechanics in 
infancy, so we treat the structural abstractions and model 
fragments of qualitative mechanics as part of the starting 
endowment of the system, rather than as something to be 
learned.  Our QM domain theory is drawn from [16, 20].  

Specifically, we use their qualitative representations of 
surfaces, force transfer, torque transfer, and center of 
rotation. 

How these structural abstractions can and should be 
applied to everyday situations is learned by our system, via 
sketched examples.  When a person is entering an example, 
they need to provide both the everyday concepts that are 
used to describe the entities in the system and the 
appropriate structural abstractions.  This is done in two 
ways.  First, the interface used for conceptual labeling 
includes both types of concepts. For example, the chassis of 
a wheelbarrow might be indicated to be an instance of 
VehicleChassis (an everyday concept) and as an 
instance of RigidObject (a QM abstraction).  Second, 
sKEA automatically computes visual/conceptual 
relationships between pairs of glyphs if they are touching or 
one is inside another (as indicated by the computed RCC8 
relationships).  sKEA offers the user the opportunity to 
specialize these relationships to provide QM relationships, 
e.g., that the beam of a seesaw can pivot around the 
seesaw’s base. 

Sometimes systems must be viewed from multiple 
perspectives.  In understanding how a wheelbarrow works, 
for example, it makes sense to draw the individual parts, 
since each contributes differently to how it functions.  But if 
we are considering how hard it will be to lift a wheelbarrow, 
we need to consider these entities as a single rigid object.  
Consequently, we extended sKEA to include group glyphs, 
which introduce a new entity to represent a selected set of 
entities, to handle such situations. 

By noting what QM concepts and relationships are 
applicable to each aspect of an example, analogy can be 
used to apply this information to new situations.  The 
everyday properties and relationships provide the 
commonalities needed to be reminded of relevant examples 
and the information needed to align the new situation with 
the example.  The technical vocabulary of QM can then be 
projected, via candidate inferences, to the new situation.  
This enables the first-principles QM domain theory to be 
applied to the new situation.   

Problem Solving 
There are two kinds of questions in the BMCT. Outcome 
questions ask the examinee to select which qualitative 

 
Figure 1a: Gear with length and counter 
clockwise rotation annotations

Figure 1b: Wheelbarrow with assumed 
force and length annotations 



behavior will occur in a situation, e.g., "which way will the 
indicated gear turn: clockwise, counterclockwise, or not at 
all?"  Differential qualitative analysis (DQA) questions 
concern relative values of the same (or similar) properties 
between two (or sometimes three) distinct scenarios.    Both 
kinds of questions rely on the same process of model 
formulation via analogy, so we begin there. 

To retrieve a relevant case, the system starts by using 
MAC/FAC on the problem sketch with low level visual 
properties removed, i.e. glyph orientations and relative 
sizes.  For outcome problems the first retrieval is used.  For 
DQA questions, the retrieval must also contain candidate 
inferences that causally constrain the goal quantity.  Should 
the first retrieval prove unsatisfactory, a second retrieval is 
performed.  If that, too, fails, the low level visual properties 
are added back into the probe and up to two more retrieval 
attempts are made.  After MAC/FAC has selected a suitable 
retrieval, SME is used to generate a mapping between the 
example, base, and the problem situation, target. All 
candidate inferences produced by this mapping pertaining to 
structural abstractions and causal models (but not specific 
parameter values) are assumed to be true for the problem. 

Once the model is formulated, solving an outcome 
problem involves standard qualitative reasoning.  The QM 
domain theory is applied to the problem to answer the 
question. Note that this critically relies on the structural 
abstraction information imported by analogy from the 
example: Without it, there would be no model fragments. 

For the DQA questions, the problem now contains 
causal information about the quantity in question.  We 
compare the situations in the problem, using SME.  This 
mapping provides the correspondences between the two 
systems needed for DQA.  This is an important departure 
from [24]:  We discovered that analogy provides a general 
mechanism for providing the frame of reference needed for 
comparative analyses.  This allows a wider class of systems 
to be analyzed, since the correspondences between systems 
are computed dynamically.  For example, some problems 
require DQA between different parts of the same system, 
e.g., which wheel of a railcar presses harder on the rail, 
when the load is nearer to the back wheel?  This does not fit 
the standard "perturbed system" format of DQA.  But SME 
creates an appropriate reference frame by mapping the 

railcar to itself, constraining the rear wheel to correspond to 
the front wheel. 

Once the reference frame is set up, differential 
qualitative analysis proceeds by chaining backward from the 
goal quantity through the causal model.  Conceptual 
quantities that are not causally constrained by other 
parameters or are not known to be different are assumed to 
be the same, i.e., a value of UnchangedDQ.  DQ values for 
visual quantities are measured from the sketch, using the 
annotation information inferred via analogy from examples. 

Example 
Figure 2 shows a problem from the BMCT sketched in our 
system.  The question, “Which acrobat will find it easier to 
keep her balance? (If equal, mark C)”, was translated into 
the following query: 
(solveDQProblem BMCT-S-17-MEK Object-1297 
Object-1298 ((QPQuantityFn Stability) Object-
1297) ?value)) 
BMCT-S-17-MEK indicates the context in which the problem 
will be solved, Object-1297 and Object-1298 represent 
the acrobats A and B respectively, and the DQA problem 
will be to determine the DQ value of the Stability of 
Object-1297, Acrobat A. 
 Since our system relies on analogy for problem solving, 
finding a good example in the system’s memory is crucial.  
Good analogs are similar situations containing causal 
models constraining relevant quantities.  One example, 
drawn to depict the sentence “A person using a pole to 
maintain their balance”, is shown in Figure 3. The stability 
of the person is causally constrained by the length of the 
pole, a visual quantity defined by a linear sketch annotation.  
This fact is asserted in this sketch via a concept map 
interface. The anchor points stored for this annotation are: 
(startPointOf AnnotationGlyph-11 
 (LeftmostBottomPointFn Glyph-3)) 
(endPointOf AnnotationGlyph-11 
 (RightmostTopPointFn Glyph-3)) 
 Retrieval is done for each situation depicted in the 
problem sketch (Figure 2), in this case twice.  During 
retrieval, the commonalities of each situation containing a 
person, a rope, and a pole are enough for MAC/FAC to 
retrieve this example.  The causal model and the annotation 

Figure 2: Problem Sketch Drawn in sKEA 



glyph’s anchor points are imported as candidate inferences 
into each situation in the problem sketch.  As a result, the 
stability of Acrobat A is causally constrained by the visual 
quantity of Acrobat A’s Pole-Length.  The same causal 
model exists for Acrobat B as well. 

 Because this is a DQA problem, the system makes an 
analogy between the Acrobat A’s layer (the base) and 
Acrobat B’s layer (the target) to frame the comparison.  The 
causal model of Acrobat A’s stability is traversed until a 
visual quantity is found.  The system measures and 
compares Acrobat A’s Pole-Length and its corresponding 
quantity, Acrobat B’s Pole-Length, given by the framing 
analogy.  The measurement is determined by the previously 
imported anchor points.  Because the value of the 
measurement increases from base to target, the DQ value of 
the Acrobat A’s Pole-Length is increased.  This DQ value is 
propagated through the positive causal link and the system 
answers that the stability has increased from Acrobat A to 
Acrobat B.  The system responds to the query by returning 
the correct answer:  
(solveDQProblem BMCT-S-17-MEK Object-1297 
Object-1298 ((QPQuantityFn Stability) Object-
1297) IncreasedDQ) 

Experiment 
We conducted an experiment to see how well this model 
performs.  We selected 13 of the 68 problems on the BMCT, 
focusing on problems involving net force, revolution rate, 
stability, and smoothness of ride. We developed a list of 18 
example situations, 15 of which were intended to be good 
analogs for specific test questions.  These examples were 
described via a single sentence of text.  We recruited three 
graduate students, with varying degrees of familiarity with 
sKEA, to serve as knowledge enterers (KEs), drawing each 
of the situations on the list.  Our goal was to determine how 
well this model performs when given case libraries drawn 
by different individuals, and by combinations of individuals. 

Method 
The KEs were told to sketch each situation, breaking it 
down into glyphs just far enough to explain the principle(s) 
that they thought were operating in the situation.  While 

drawing, they used sKEA's visual/conceptual relationships 
interface to fill in their intended relationships, selecting 
from the candidates offered.  KEs were also given a list of 
non-QM conceptual parameters that were relevant in this 
subset of the test (smoothness of ride, revolution rate, and 
stability), and asked to add these to the sketch when 
appropriate, along with a causal model describing how they 
are constrained by any visual quantities.  The visual 
quantities were defined via annotations, and the other 
aspects of the causal model were entered via a concept map 
interface linked to sKEA.  After they considered their sketch 
complete, they ran the QM system to derive model fragment 
instances.  If they were not satisfied with the model 
fragment instances found, they were encouraged to modify 
their sketch (typically by adding structural abstraction 
information, through sKEA's standard conceptual labeling 
mechanism, or a visual/conceptual relationship) until they 
were.  For example, in a sketch depicting two meshed gears 
and one of the gears is rotating (as indicated by an 
annotation), then there is something wrong if there is no 
mention of torque transfer in the active model fragment list.  
Once finished, each example sketch was stored in a case 
library for that particular KE. 

The 13 problems (11 DQA and two outcome problems) 
were drawn by a fourth graduate student serving as the 
problem enterer (PE), an experienced sKEA user.  These 
problems were presented to the system in a series of seven 
trials, one for each case library alone as well as each pair 
wise combination and finally all the examples in the system. 

Results and Discussion 

A summary of the results appears in Table 1.  The correct 
retrieval column lists the number of times the system 
retrieved one of the good analogs for the problem sketch; as 
defined above.  The correct answer column lists the number 
of times the system provided the correct answer.  Of the 13 
problems, only one was not solved in any of the trials, as 
discussed later.  KE2 had the most experience with sKEA 
leading to similar representations to the PE, and KE3 had 
the least experience, providing some serious variability. 

Recall that the system would not be able to solve any of 
these problems without the examples to work from.  Four of 
the seven trials had statistically significant results (P < 
0.05).  The system’s performance improves as better 
examples are accumulated.  The results using combinations 
of case libraries support this model’s claim to be general 
purpose and scalable.  In each of the combination trials, 

 
 

 
Figure 3: Example Sketch with Pole-Length Linear 
Annotation 

Library  # Correct Retrievals  
(of 13) 

# Correct Answers 
(of 13) 

KE1 7 5 (p < .45) 
KE2 10 10 (p < .001) 
KE3 6 2 (p < .96) 
KE1+2 11 9 (p < .008) 
KE1+3 9 5 (p < .45) 
KE2+3 10 10 (p < .001) 
KE1+2+3 12 10 (p < .001) 

Table 1: Problem Solving Results



example sketches from at least two of the case libraries were 
used to formulate correct answers. 

Table 2 breaks down the results by question type to 
analyze the failures.  The outcome questions errors occurred 
only from failures to retrieve the correct case from the case 
library.  The system would reason from whatever structural 
abstractions it found from the example case.  The four 
failures occurred when the system confused a gear rotating 
inside another gear with two gears rotating side by side due 
to annotation glyph placement.  Failure detection in 
qualitative mechanics is difficult because it is an implicit 
assumption that the mapping with the example case will 
provide the correct structural abstractions.  People seem to 
handle this by recognizing contradictions in their reasoning. 

The problem solving failures in the DQA problems 
were much more interesting, due to their complexity.  
During the model formulation phase, the retrieval algorithm 
determines that the mapping with the example case will 
yield a causal model for the quantity in question.  For 20 of 
the 77 problems, a retrieval causally constraining the sought 
quantity could not be found.  Frequently this was because 
the KEs drew the situation at a different level of abstraction 
than the PE.  This was especially true for the one problem 
that was never solved correctly where the KEs’ sketches 
contained between 7 and 8 glyphs and the PE’s contained 
only 5 glyphs.  The second failure type is when the causal 
model contains elements that do not exist in the problem 
sketch due to a bad mapping.  These are the remaining 16 
DQA failures.  An example of this appears in Figure 4. 

The difference in numbers of glyphs and entities 

depicted in these sketches is difficult for our system to 
handle.  The problem sketch contains glyphs for the ground 
and the axle, but the example does not.  The chassis in the 
problem sketch is conceptually labeled as a leg in the 
example.  Fundamental differences like these lead to 
incorrect mappings, e.g., the bin in the example to the 
chassis in the problem.  This leads to incorrect candidate 
inferences, which in turn forces the system to attempt to 
reason about surfaces or glyphs that do not exist. 

People seem to have several methods for dealing with 
such problems.  First, people try other examples, going back 
to memory to find an example that is more productive.  A 
simple version of this is already implemented in the system.  
Also, people use rerepresentation [26] to bring the base and 
target into closer alignment.  Knowledge about depiction 
seems crucial: If two sketches are misaligned, simplifying 
the more complex one, or postulating new glyphs in the 
simplified one, seems to be a promising strategy. 

These results indicate the strength and breadth of our 
common sense reasoning system.  The major components 
have been designed in a domain independent manner from 
the model formulation via analogy, to the use of sketch 
annotations to define visual quantities, and the use of 
analogy to frame comparative analyses. 

Related Work 
Previous efforts in qualitative mechanics have created 
systems that can reason about clocks [20], mechanisms [15, 
22], and internal combustion engines [16].  Some 
researchers use high-resolution inputs or CAD systems to 
produce structural descriptions containing metric 
information which can also be exploited by the system. 
Aside from annotations and low-level visual properties 
included in similarity computations, we do not exploit 
metric information at all.  SketchIt [22] used sketched input, 
but allowed only a handful of abstract types to be drawn.   

The use of experience in model formulation was 
proposed by Falkenhainer [4], for improving compositional 
modeling by choosing appropriate perspectives and levels of 
detail.  Unlike this effort, he assumed a complete and 
correct domain theory as a starting point. 

Similarity-based qualitative simulation [25] also uses 
analogy for qualitative reasoning, but focuses on multi-state 
reasoning, unlike the single-state problems addressed here. 

Discussion 
This work provides evidence that qualitative reasoning 
combined with analogical reasoning is a promising 
explanation for how common sense reasoning works.  The 
mapping from structural descriptions to structural 
abstractions, we hypothesize, is learned incrementally from 
examples.  As shown here, examples can be used by 
analogy to aid in formulating models for new situations.  
Similarly, sketch annotations provide a means for defining 
visual quantities in examples which can be used by analogy 
to define visual quantities for new situations.  Analogy also 
plays an important role in qualitative analysis once the 

Figure 4a. Example Wheelbarrow 

Figure 4b. Problem Wheelbarrow 

Question Type 
(number) 

# Correct 
Retrieval 

# Answers 
Produced 

# Answers 
Correct 

Outcome 
Questions (14) 

10 14  10 

DQA 
Questions (77) 

55 57 41 

Table 2: Results by Question Type 



model has been formulated, e.g. our use of mappings as 
frames of reference for differential qualitative analysis. 

As noted earlier, there are several paths to explore in 
future work.  Variations on the baseline model of analogical 
processing used here constitute one line of investigation.  
This includes more aggressive retrieval strategies (e.g., 
using multiple analogs), rerepresentation to improve 
mappings, and using the SEQL model [17] to learn 
generalizations from examples.  We are also designing an 
interactive interface so that we can expand the system's 
capabilities by teaching it.  For more than half of the 
incorrect answers, the system knew that it could not provide 
a good answer.  This is an opportunity to explore interactive 
learning while problem solving. For instance, given an 
incorrect mapping or retrieval, providing feedback about 
what a better mapping or retrieval would be gives the 
system evidence on how to reorganize its methods for 
encoding situations, which should lead to improved 
performance.  Our goal is to expand its capabilities via 
instruction to include the full range of phenomena covered 
in the Bennett Mechanical Comprehension test.  Being able 
to perform at an expert level on such an exam would be a 
landmark in qualitative and common sense reasoning. 
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