 Computers communicate by sending packets of data
to one another
— Each packet contains a small amount of information
— Larger data (e.g. files) are split into many packets
— Packets are sent in order from the sender to the receiver
— The receiver puts the packets back together as necessary

* Toconnecttoa network, d computer must have a
network interface
— Often called a NIC for network interface card

— Network interfaces are connected by physical wires or
radio waves

— On most networks (e.g. ethernet), when one computer
puts a packet on the wire, all other connected computers
can see it

* Packets are addressed
— Each NIC has a unique MAC address burned into it

— Only the computer the packet is addressed to is supposed
to keep it

* Once alocal network gets too crowded, it slows
down

— Solution: hierarchical organization

* Network devices:
— Hub: connects machines all together in one local network

— Switch: like a hub, but is smart about sending packets only
to the computers they’re addressed to

— Router: supports large-scale hierarchical networks

* Internet Protocol (IP)
— Used to route packets around the internet

— Assigns a unique address to every computer on the
internet

* Well, not really anymore, but that’s the abstraction
— |IPv4 address: 4 digits (e.g. 129.105.119.237)

— First 3 digits typically specify the subnet (class-C)

* Machines on the same subnet may or may not be physically
together

* |P specifies a binary header for each packet

— Concerned only with routing (delivery)
— http://www.freesoft.org/CIE/Course/Section3/7.htm

http://www.freesoft.org/CIE/Course/Section3/7.htm

* Each router has multiple connections
— Multiple paths it could send a packet

— Routers talk to each other to establish which path a packet
should follow

— Routing information protocol (RIP) is the simplest
— Only have to know where a subnet is, not each machine

— Routers maintain tables of routing information and share
with each other

|P addresses are hard to remember

— Names are much easier

The DNS system maps names to IP addresses
— www.google.com, www.microsoft.com, www.utpa.edu
— Domain name servers keep track of mappings

DNS is hierarchical

— UTPA has a DNS server for all our machines
— Higher level DNS servers direct queries to our machines

Use nslookup or host to perform DNS queries

* |Pis only concerned with routing
— Not concerned with the packet content
— Not concerned with packet ordering
— Doesn’t guarantee delivery (no receipt)

* Transmission control protocol (TCP)
— Works on top of IP

— Creates a stateful abstraction (stream communication)
» Reorders packets into proper sequence
* Sends acknowledgement of packets
* Requests re-send of missing packets

— http://www.potaroo.net/papers/isoc/2004-07/tcpl.html

http://www.potaroo.net/papers/isoc/2004-07/tcp1.html

e User Datagram Protocol
— Also works on top of IP, alternative to TCP

— No state, no acknowledgement, no re-ordering, no re-
sending, no flow control...

— Just send packets to a port
* Does carry a checksum for integrity verification

— Unreliable, packets are lost (dropped)
* Used when a missing packet doesn’t matter as much as speed
* Streaming video/audio
* Game position updates (since they get replaced quickly)
* Not for important, one-time in-game events

* Peer-to-peer
— Every host responsible to update every other host
e Client/server

— One host is designated server
— Acts as communication hub (star topology)

e Dedicated server
— Non-player machine
— Acts as communication hub (star topology)

Sequence of fixed-size
fields

— Way harder to work with
than HTTP style key/value
pairs

— But far more efficient

TCP/IP Packet

- 32 bits .
0 4 8 16 19 31
Version | Length | Type of Service Total Length
Identification Flags Fragment Offset
g Time to Live Protocol Header Checksum
f Source Address
i Destination Address
Options
Data
Source Port Destination Port
Sequence Number
Acknowledgment Number
é Offset | Reserved |- ET SZTF%SS 9 Window
Checksum Urgent Pointer

TCP Options

* Fixed header fields pre-pended to (wrapped around)
variable-sized data

— Ethernet wraps IP, IP wraps TCP, TCP wraps application-
specific protocol

— Minimize unwrapping during transmission

Ethernet Packet

Receiver Sender Murnber Diata
MaC-address| MaC-address| of bytes

IP Packet
i

Sender Receiver
W{IHL| Tos| L|ID| FL| FO ekl | Prak) CHs IF-address | IP-address Daka /{
TCP Packet ﬁ
1!
Sender Receiver
Part nurmber | Part number S# | Acks# | Fl| CHs Data /f

* Need to create a packet format

— Fixed-size header fields, then variable data
* E.g. Time or turn counter, client identifier, player identifier

— Array of operations:
e E.g.join, leave, select, fire
* With operation-specific arguments

* Scenario: FPS
* Each host updates all other hosts (peer-to-peer)

— Send current position, animation
— Send “shoot” message, with target and hit/miss
* In game loop, pump network events

— Just like you pump for user input events
— Handle each packet by updating the world state

* Network latency
— Messages aren’t sent instantaneously

— Everyone else will see you move/shoot after you actually
do it
* Hundreds of milliseconds after
— Assume 100ms latency (not terrible ping)
* You shoot and hit Joe at time 5000
* You’re actually “hitting” him where he was at time 4900
* The shoot/hit message gets to Joe at time 5100

* He sees himself get hit based on where he was 200ms ago and
where you were 100ms ago

— Worse, cannot determine who shot first

* Network congestion, message load
— How often should you send a position update?
— More frequent = more traffic, more load, more latency

— Less frequent = less accurate, choppy
e 20 fps can fool the human eye into seeing “motion”
* Equivalent to update every 50ms

 The clientis in the hands of the enemy!

— Never trust data from another player

 Many, many ways to cheat
— Speedhack: lie about where you are

— Maphack: make all players bright green and visible at all
times

— Aimbot: just say you always hit, or automatically calculate
the correct aiming vector to guarantee a hit

Used in classic RTS games

Deterministic simulation

— Always has the same outcome for the same inputs

Only send inputs around
— Everyone independently calculate outcome
— Compare against each other to detect cheating

Problem: one of the input parameters is time!
— Latency makes time-of-input different on each machine
— Solution: synchronize simulation steps

* Everyone simulate one step, then wait for everyone else
* Inputs are necessarily attached to the same step for everyone

* Lockstep is very inefficient
e Make the server authoritative

— Clients just send inputs, server simulates and sends results
— Used in FPS and MMOs

e Example:
— Send forward key press to server
— Wait...
— Server simulates movement
— Server sends position update to all clients
— Problem: | just waited 200ms between keypress and action
— Problem: heavy server load

* Responsiveness matters a lot

— Waiting for the server to authorize your movement is not
feasible

* Apply inputs immediately to client-side simulation

— Player sees immediate action

* Only an estimate of what happens, server must confirm

— Send inputs to server, receive updated world state
* When server packets are received, update local state to match
* Server information is always correct

— Problems: jitter, popping, events being undone
* Smoothly interpolate from estimated position to real position

 But what about everyone else?

e Extrapolation
— Given known position, velocity, etc
— Assume they keep the same input (e.g. holding down W)
— Estimate their next position
— When state arrives from the server, correct the local state
— Much worse popping, unexpected hits/misses

* Event extrapolation
— On input, start animation (e.g. spell casting)

— Stretch out the animation until server response (hit/miss)
— Avoids undoing actions and events

* Interpolation
— Delay the simulation to work with only known state
— Receive state data from server at 500ms and 600ms
— Simulate other entities from 600ms to 700ms

* Interpolate between known positions
* Movement is real, just delayed 100ms

— No popping if delay > lag

— Player is in the present, enemies are in the past
* Not as bad as it sounds for movement

e A perfect shot at 500ms

— |Is pointed at where the enemy was at 400ms
— And will be checked on the server at 600ms
— (They’ve probably moved by then and you miss)

* Instead, have the server check in the past
— Check at 600ms
— ...where the player aimed at 500ms
— ...against where enemy was at 400ms
* Trade-off: delayed hits instead of phantom misses

— Generally less objectionable

e Time matters!

Re-simulate
whenever new
information is
received

Rollback

SERVER
[/

Overwatch Gameplay Architecture and Netcode, Timothy Ford, Blizzard, GDC 2017
https://www.youtube.com/watch?v=W 3aieHjyNvw&t{=1738s

Clients send position, not input

— Server does not have to simulate player movement
— Used in MMOs to reduce load

— Self-movement is not impacted by lag

— Server must periodically check for speed hacking or
teleporting
* Random sampling

Click targeting
— Acquiring a target isn’t an issue of aiming
— Does not require server-side intersection tests

e Standardized back around DOOM Il/Unreal/Half-Life

— Authoritative server model (either dedicated or a random
player machine)

— Prioritizing predictability

— Send complete state snapshots at fixed tick (10-20Hz)

* Relatively infrequent transmission
* Delta-compress snapshots (only send what is different)

— UDP, since dropped information is quickly replaced by the
next snapshot

* Unity GameObjects, UE Actors

— Mark which attributes of which Entities (e.g. position of
the player) should be included and “synchronized”

— Set extrapolation/interpolation parameters to tune

— Nice and simple abstraction, not suitable for competitive
multiplayer w/o prediction, reconciliation, rollback, etc.

* Events/RPC

— Used to send infrequent, reliable messages for important
events (e.g. kills, pickups)

Simple guide to modern competitive multiplayer netcode features
— https://gabrielgambetta.com/client-server-game-architecture.html

Canonical paper on RTS lockstep networking:

— https://www.gamedeveloper.com/programming/1500-archers-on-a-
28-8-network-programming-in-age-of-empires-and-beyond
Half-Life networking (lag compensation)

— https://developer.valvesoftware.com/wiki/Latency Compensating_Me
thods_in_Client/Server_In-
game_Protocol_Design_and_Optimization#Lag_Compensation

Detailed description of the Doom Il model:

— http://mrelusive.com/publications/papers/The-DOOM-III-Network-
Architecture.pdf

	Basic networking
	Local networks
	Routing
	Internet protocol (IP)
	Internet protocol (IP)
	Domain name service (DNS)
	TCP
	UDP
	Topology
	Slide Number 10
	Slide Number 11
	Game Protocol
	Naïve Networking
	Problems!
	Problems!
	Problems!
	Lockstep
	Server Authoritative
	Prediction and Reconciliation
	Dead Reckoning
	Dead Reckoning
	Lag Compensation
	Rollback
	Partial Client Authority
	Server State Updates
	Simple Replication
	Further Reading

