 Computers communicate by sending packets of data
to one another
— Each packet contains a small amount of information
— Larger data (e.g. files) are split into many packets
— Packets are sent in order from the sender to the receiver
— The receiver puts the packets back together as necessary



* Toconnecttoa network, d computer must have a
network interface
— Often called a NIC for network interface card

— Network interfaces are connected by physical wires or
radio waves

— On most networks (e.g. ethernet), when one computer
puts a packet on the wire, all other connected computers
can see it

* Packets are addressed
— Each NIC has a unique MAC address burned into it

— Only the computer the packet is addressed to is supposed
to keep it



* Once alocal network gets too crowded, it slows
down

— Solution: hierarchical organization

* Network devices:
— Hub: connects machines all together in one local network

— Switch: like a hub, but is smart about sending packets only
to the computers they’re addressed to

— Router: supports large-scale hierarchical networks



* Internet Protocol (IP)
— Used to route packets around the internet

— Assigns a unique address to every computer on the
internet

* Well, not really anymore, but that’s the abstraction
— |IPv4 address: 4 digits (e.g. 129.105.119.237)

— First 3 digits typically specify the subnet (class-C)

* Machines on the same subnet may or may not be physically
together

* |P specifies a binary header for each packet

— Concerned only with routing (delivery)
— http://www.freesoft.org/CIE/Course/Section3/7.htm



http://www.freesoft.org/CIE/Course/Section3/7.htm

* Each router has multiple connections
— Multiple paths it could send a packet

— Routers talk to each other to establish which path a packet
should follow

— Routing information protocol (RIP) is the simplest
— Only have to know where a subnet is, not each machine

— Routers maintain tables of routing information and share
with each other



|P addresses are hard to remember

— Names are much easier

The DNS system maps names to IP addresses
— www.google.com, www.microsoft.com, www.utpa.edu
— Domain name servers keep track of mappings

DNS is hierarchical

— UTPA has a DNS server for all our machines
— Higher level DNS servers direct queries to our machines

Use nslookup or host to perform DNS queries



* |Pis only concerned with routing
— Not concerned with the packet content
— Not concerned with packet ordering
— Doesn’t guarantee delivery (no receipt)

* Transmission control protocol (TCP)
— Works on top of IP

— Creates a stateful abstraction (stream communication)
» Reorders packets into proper sequence
* Sends acknowledgement of packets
* Requests re-send of missing packets

— http://www.potaroo.net/papers/isoc/2004-07/tcpl.html



http://www.potaroo.net/papers/isoc/2004-07/tcp1.html

e User Datagram Protocol
— Also works on top of IP, alternative to TCP

— No state, no acknowledgement, no re-ordering, no re-
sending, no flow control...

— Just send packets to a port
* Does carry a checksum for integrity verification

— Unreliable, packets are lost (dropped)
* Used when a missing packet doesn’t matter as much as speed
* Streaming video/audio
* Game position updates (since they get replaced quickly)
* Not for important, one-time in-game events



* Peer-to-peer
— Every host responsible to update every other host
e Client/server

— One host is designated server
— Acts as communication hub (star topology)

e Dedicated server
— Non-player machine
— Acts as communication hub (star topology)



Sequence of fixed-size
fields

— Way harder to work with
than HTTP style key/value
pairs

— But far more efficient

TCP/IP Packet

- 32 bits .
0 4 8 16 19 31
Version | Length | Type of Service Total Length
Identification Flags Fragment Offset
g Time to Live Protocol Header Checksum
f Source Address
i Destination Address
Options
Data
Source Port Destination Port
Sequence Number
Acknowledgment Number
é Offset | Reserved |- ET SZTF%SS 9 Window
Checksum Urgent Pointer

TCP Options




* Fixed header fields pre-pended to (wrapped around)
variable-sized data

— Ethernet wraps IP, IP wraps TCP, TCP wraps application-
specific protocol

— Minimize unwrapping during transmission

Ethernet Packet

Receiver Sender Murnber Diata
MaC-address| MaC-address| of bytes

IP Packet
i

Sender Receiver
W{IHL| Tos| L|ID| FL| FO ekl | Prak) CHs IF-address | IP-address Daka /{
TCP Packet ﬁ
1!
Sender Receiver
Part nurmber | Part number S# | Acks# | Fl| CHs Data /f




* Need to create a packet format

— Fixed-size header fields, then variable data
* E.g. Time or turn counter, client identifier, player identifier

— Array of operations:
e E.g.join, leave, select, fire
* With operation-specific arguments



* Scenario: FPS
* Each host updates all other hosts (peer-to-peer)

— Send current position, animation
— Send “shoot” message, with target and hit/miss
* In game loop, pump network events

— Just like you pump for user input events
— Handle each packet by updating the world state



* Network latency
— Messages aren’t sent instantaneously

— Everyone else will see you move/shoot after you actually
do it
* Hundreds of milliseconds after
— Assume 100ms latency (not terrible ping)
* You shoot and hit Joe at time 5000
* You’re actually “hitting” him where he was at time 4900
* The shoot/hit message gets to Joe at time 5100

* He sees himself get hit based on where he was 200ms ago and
where you were 100ms ago

— Worse, cannot determine who shot first



* Network congestion, message load
— How often should you send a position update?
— More frequent = more traffic, more load, more latency

— Less frequent = less accurate, choppy
e 20 fps can fool the human eye into seeing “motion”
* Equivalent to update every 50ms



 The clientis in the hands of the enemy!

— Never trust data from another player

 Many, many ways to cheat
— Speedhack: lie about where you are

— Maphack: make all players bright green and visible at all
times

— Aimbot: just say you always hit, or automatically calculate
the correct aiming vector to guarantee a hit



Used in classic RTS games

Deterministic simulation

— Always has the same outcome for the same inputs

Only send inputs around
— Everyone independently calculate outcome
— Compare against each other to detect cheating

Problem: one of the input parameters is time!
— Latency makes time-of-input different on each machine
— Solution: synchronize simulation steps

* Everyone simulate one step, then wait for everyone else
* Inputs are necessarily attached to the same step for everyone



* Lockstep is very inefficient
e Make the server authoritative

— Clients just send inputs, server simulates and sends results
— Used in FPS and MMOs

e Example:
— Send forward key press to server
— Wait...
— Server simulates movement
— Server sends position update to all clients
— Problem: | just waited 200ms between keypress and action
— Problem: heavy server load



* Responsiveness matters a lot

— Waiting for the server to authorize your movement is not
feasible

* Apply inputs immediately to client-side simulation

— Player sees immediate action

* Only an estimate of what happens, server must confirm

— Send inputs to server, receive updated world state
* When server packets are received, update local state to match
* Server information is always correct

— Problems: jitter, popping, events being undone
* Smoothly interpolate from estimated position to real position



 But what about everyone else?

e Extrapolation
— Given known position, velocity, etc
— Assume they keep the same input (e.g. holding down W)
— Estimate their next position
— When state arrives from the server, correct the local state
— Much worse popping, unexpected hits/misses

* Event extrapolation
— On input, start animation (e.g. spell casting)

— Stretch out the animation until server response (hit/miss)
— Avoids undoing actions and events



* Interpolation
— Delay the simulation to work with only known state
— Receive state data from server at 500ms and 600ms
— Simulate other entities from 600ms to 700ms

* Interpolate between known positions
* Movement is real, just delayed 100ms

— No popping if delay > lag

— Player is in the present, enemies are in the past
* Not as bad as it sounds for movement



e A perfect shot at 500ms

— |Is pointed at where the enemy was at 400ms
— And will be checked on the server at 600ms
— (They’ve probably moved by then and you miss)

* Instead, have the server check in the past
— Check at 600ms
— ...where the player aimed at 500ms
— ...against where enemy was at 400ms
* Trade-off: delayed hits instead of phantom misses

— Generally less objectionable



e Time matters!

Re-simulate
whenever new
information is
received

Rollback

SERVER
[ /

Overwatch Gameplay Architecture and Netcode, Timothy Ford, Blizzard, GDC 2017
https://www.youtube.com/watch?v=W 3aieHjyNvw&t{=1738s



Clients send position, not input

— Server does not have to simulate player movement
— Used in MMOs to reduce load

— Self-movement is not impacted by lag

— Server must periodically check for speed hacking or
teleporting
* Random sampling

Click targeting
— Acquiring a target isn’t an issue of aiming
— Does not require server-side intersection tests



e Standardized back around DOOM Il/Unreal/Half-Life

— Authoritative server model (either dedicated or a random
player machine)

— Prioritizing predictability

— Send complete state snapshots at fixed tick (10-20Hz)

* Relatively infrequent transmission
* Delta-compress snapshots (only send what is different)

— UDP, since dropped information is quickly replaced by the
next snapshot



* Unity GameObjects, UE Actors

— Mark which attributes of which Entities (e.g. position of
the player) should be included and “synchronized”

— Set extrapolation/interpolation parameters to tune

— Nice and simple abstraction, not suitable for competitive
multiplayer w/o prediction, reconciliation, rollback, etc.

* Events/RPC

— Used to send infrequent, reliable messages for important
events (e.g. kills, pickups)



Simple guide to modern competitive multiplayer netcode features
— https://gabrielgambetta.com/client-server-game-architecture.html

Canonical paper on RTS lockstep networking:

— https://www.gamedeveloper.com/programming/1500-archers-on-a-
28-8-network-programming-in-age-of-empires-and-beyond
Half-Life networking (lag compensation)

— https://developer.valvesoftware.com/wiki/Latency Compensating_Me
thods_in_Client/Server_In-
game_Protocol_Design_and_Optimization#Lag_Compensation

Detailed description of the Doom Il model:

— http://mrelusive.com/publications/papers/The-DOOM-III-Network-
Architecture.pdf
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