
User-defined functions
 A predefined function is just a function someone else

wrote and put in a module

 Programs are made up of multiple functions
 Putting all your code in one file top-to-bottom is very hard to

work with
 Functions let you organize and reuse code

Parts of a function definition
def cube(x):
what the function does goes here as a
code block (all indented)

Function heading def cube(x):

 Name of the function cube

 List of parameters, with types (x)

Function body The indented block

Writing cube(x)
def cube(x):
 c = x * x * x
 return c

 In the function body you can put any statements
 All the things we did outside functions work inside functions

 Functions work with their parameters
 If you’re not going to do something with x, why pass it in?

 The return statement:
 Ends the function immediately
 Returns the specified value (the function call evaluates to that value)

Alternative cube(x)
def cube(x):
 c = x * x * x
 return c

def cube(x):
 return x * x * x

Call and definition
 There are two distinct viewpoints on every function
 The function call (outside)

 Call by name
 Provide (pass in) input parameters or arguments
 Get back the return value and do something with it

 The function definition (inside)
 Receive the parameters
 Do something with them (and also local variables)
 Return (pass out) a value

Parameters
 Formal parameters
 Used inside the function
 Declared by name in the function heading
 E.g. x in def cube(x):

 Actual parameters
 Passed from outside in the function call
 Must match the number and types of the formal parameters
 E.g. 5 in cube(5)

 Each actual parameter provides a value for a formal
parameter
 x gets the value 5

Functions, variables and memory
 Each function has its own scope
 Space where all its variables exist
 There is also a scope for the module
 When a function is called, new space is created for its

parameters and variables
 When a function ends, those parameters and variables are

discarded

Functions, variables and memory
 Consider this function definition and call:

def sum_three(x, y, z):
 sum = x + y + z
 return sum

sum = sum_three(5, 6, 7)

 x, y and z are the formal parameters inside the function
 5, 6 and 7 are the values being passed in from outside

Functions, variables and memory
 When the function call is made:
1. Create the formal parameters
2. Assign actual parameter values
3. Create the local variable sum
4. Calculate and assign the sum
5. Return the sum (all variables discarded)

Sum

x
y
z

Sum

5 x
6 y
7 z

Sum

5 x
6 y
7 z
7 sum

Sum

5 x
6 y
7 z

sum

Functions, variables and memory
 Local variables and parameters inside a function are

specific to that function!
 They don’t exist outside, which is why values must be passed in

and returned
 Functions cannot use variables declared in another function

(even main)
 We say that they are out of scope

 Variables with the same name in different functions

are separate, distinct variables!

Using Functions
 Functions are like building blocks
 They allow complicated programs to be divided into

manageable pieces
 Some advantages of functions:
 Can be re-used (even in different programs)
 A programmer can focus on just that part of the program

and construct it, debug it, and perfect it
 Different people can work on different functions

simultaneously
 Enhance program readability

	User-defined functions
	Parts of a function definition
	Writing cube(x)
	Alternative cube(x)
	Call and definition
	Parameters
	Functions, variables and memory
	Functions, variables and memory
	Functions, variables and memory
	Functions, variables and memory
	Using Functions

