User-defined functions

» A predefined function is just a function someone else
wrote and put in a module

» Programs are made up of multiple functions

Putting all your code in one file top-to-bottom is very hard to
work with

Functions let you organize and reuse code

Parts of a function definition

def cube(x):
what the function does goes here as a
code block (all indented)

Function heading def cube(x):
Name of the function cube
List of parameters, with types (X)

Function body The indented block

Writing cube(X)
def cube(x):

Cc = X *¥ xX * X

return c

» In the function body you can put any statements

All the things we did outside functions work inside functions
» Functions work with their parameters

If you’re not going to do something with x, why pass it in?
» The return statement:

Ends the function immediately

Returns the specified value (the function call evaluates to that value)

Alternative cube(X)

def cube(x):
C =X *Xx *X

return c

def cube(x):
return x * x * x

Call and definition

» There are two distinct viewpoints on every function

The function call (outside)
Call by name
Provide (pass in) input parameters or arguments
Get back the return value and do something with it
The function definition (inside)
Receive the parameters
Do something with them (and also local variables)

Return (pass out) a value

Parameters

» Formal parameters
Used inside the function
Declared by name in the function heading
E.e. X in def cube(x):

» Actual parameters
Passed from outside in the function call
Must match the number and types of the formal parameters
E.e.5 in cube(5)
» Each actual parameter provides a value for a formal
parameter

X gets the value 5

Functions, variables and memory

» Each function has its own scope
Space where all its variables exist
There is also a scope for the module

When a function is called, new space is created for its
parameters and variables

When a function ends, those parameters and variables are
discarded

Functions, variables and memory

» Consider this function definition and call:
def sum_three(x, y, z):
sum = X + Yy + Z

return sum

sum = sum_three(5, 6, 7)

» X,y and z are the formal parameters inside the function

» 5,6 and 7 are the values being passed in from outside

Functions, variables and memory

» When the function call is made:

I. Create the formal parameters

2. Assign actual parameter values

3. Create the local variable sum

4. Calculate and assign the sum

5. Return the sum (all variables discarded)

[Sum\
X
Yy
y4

G %

-

Sum

X |5
V|6
Z |7

~

N[Nl ||L»

Functions, variables and memory

» Local variables and parameters inside a function are
specific to that function!

They don’t exist outside, which is why values must be passed in
and returned

Functions cannot use variables declared in another function
(even main)

We say that they are out of scope

» Variables with the same name in different functions
are separate, distinct variables!

Using Functions

» Functions are like building blocks

» They allow complicated programs to be divided into
manageable pieces

» Some advantages of functions:
Can be re-used (even in different programs)

A programmer can focus on just that part of the program
and construct it, debug it, and perfect it

Different people can work on different functions
simultaneously

Enhance program readability

	User-defined functions
	Parts of a function definition
	Writing cube(x)
	Alternative cube(x)
	Call and definition
	Parameters
	Functions, variables and memory
	Functions, variables and memory
	Functions, variables and memory
	Functions, variables and memory
	Using Functions

