
User-defined functions
 A predefined function is just a function someone else

wrote and put in a module

 Programs are made up of multiple functions
 Putting all your code in one file top-to-bottom is very hard to

work with
 Functions let you organize and reuse code

Parts of a function definition
def cube(x):
what the function does goes here as a
code block (all indented)

Function heading def cube(x):

 Name of the function cube

 List of parameters, with types (x)

Function body The indented block

Writing cube(x)
def cube(x):
 c = x * x * x
 return c

 In the function body you can put any statements
 All the things we did outside functions work inside functions

 Functions work with their parameters
 If you’re not going to do something with x, why pass it in?

 The return statement:
 Ends the function immediately
 Returns the specified value (the function call evaluates to that value)

Alternative cube(x)
def cube(x):
 c = x * x * x
 return c

def cube(x):
 return x * x * x

Call and definition
 There are two distinct viewpoints on every function
 The function call (outside)

 Call by name
 Provide (pass in) input parameters or arguments
 Get back the return value and do something with it

 The function definition (inside)
 Receive the parameters
 Do something with them (and also local variables)
 Return (pass out) a value

Parameters
 Formal parameters
 Used inside the function
 Declared by name in the function heading
 E.g. x in def cube(x):

 Actual parameters
 Passed from outside in the function call
 Must match the number and types of the formal parameters
 E.g. 5 in cube(5)

 Each actual parameter provides a value for a formal
parameter
 x gets the value 5

Functions, variables and memory
 Each function has its own scope
 Space where all its variables exist
 There is also a scope for the module
 When a function is called, new space is created for its

parameters and variables
 When a function ends, those parameters and variables are

discarded

Functions, variables and memory
 Consider this function definition and call:

def sum_three(x, y, z):
 sum = x + y + z
 return sum

sum = sum_three(5, 6, 7)

 x, y and z are the formal parameters inside the function
 5, 6 and 7 are the values being passed in from outside

Functions, variables and memory
 When the function call is made:
1. Create the formal parameters
2. Assign actual parameter values
3. Create the local variable sum
4. Calculate and assign the sum
5. Return the sum (all variables discarded)

Sum

x
y
z

Sum

5 x
6 y
7 z

Sum

5 x
6 y
7 z
7 sum

Sum

5 x
6 y
7 z

sum

Functions, variables and memory
 Local variables and parameters inside a function are

specific to that function!
 They don’t exist outside, which is why values must be passed in

and returned
 Functions cannot use variables declared in another function

(even main)
 We say that they are out of scope

 Variables with the same name in different functions

are separate, distinct variables!

Using Functions
 Functions are like building blocks
 They allow complicated programs to be divided into

manageable pieces
 Some advantages of functions:
 Can be re-used (even in different programs)
 A programmer can focus on just that part of the program

and construct it, debug it, and perfect it
 Different people can work on different functions

simultaneously
 Enhance program readability

	User-defined functions
	Parts of a function definition
	Writing cube(x)
	Alternative cube(x)
	Call and definition
	Parameters
	Functions, variables and memory
	Functions, variables and memory
	Functions, variables and memory
	Functions, variables and memory
	Using Functions

