
Getting Into the Details
def change(inside_number, inside_list):
inside_number = 5
inside_list[0] = 7
return inside_number

outside_number = 12
outside_list = [1,2,3]
result = change(outside_number, outside_list)

 What are the values at the end of outside_number,
outside_list and result?

Memory Management
 Quick review:
 Computers store all data in memory
 All data is stored in binary form
 The type of the data (e.g. int, string, image) is used by functions

to know how to process the data
 109 can be the number 109, the character ‘m’, a color value, etc.

Memory Management
 Assigning a new variable allocates memory for its value

a = 19
 Creates a new integer object with the value 19
 Makes the name (symbol) a reference that object

a = [1,2,3,4]
 Creates a new list object with 4 slots
 Creates 4 new integer objects with values 1,2,3,4
 Makes each slot in the list reference an integer object
 Makes the name (symbol) a reference the list object

Heap and Scope
 All objects are allocated on a heap, a chunk of memory

reserved for the program
 Variables exist in the scope of the module or function that

they are created in
 A variable name cannot be used outside its scope; that’s a

different variable
 E.g. Portland, OR vs. Portland, Maine

Assignment
 Assigning a variable
 Creates that variable if it doesn’t exist
 Makes it reference the value given

 Assigning a variable to another variable
 a = 17
 b = a
 Makes the symbol b reference the same object that a

references

Assignment
 Assigning a variable
 Creates that variable if it doesn’t exist
 Makes it reference the value given

 Assigning a variable to another variable
a = 17
 a references an integer object with value 17
b = a
 b references the same object
a = 18
 a references a different integer object with value 18
 (b still references 17)

Assignment
 Assigning a variable to another variable
a = [17,18]
 a references a list object referencing objects for 17 and 18
b = a
 b references the same list object
b[0] = 16
 The shared list now references object with values 16 and 18

 i.e. a and b both reference [16,18]
a = [20,21]
 a references a new list object
 b still references the old list with [16,18]

Getting Into the Details
def change(inside_number, inside_list):
inside_number = 5
inside_list[0] = 7
return inside_number

outside_number = 12
outside_list = [1,2,3]
result = change(outside_number, outside_list)

 Values at the end:
 outside_number => 12
 outside_list => [7,2,3]
 result => 5

Getting Into the Details
 Passing parameter values into a function works exactly

the same way that assigning a variable to another variable
works!
 The parameter inside the function is assigned the value of the

variable (or literal) that is passed in

	Getting Into the Details
	Memory Management
	Memory Management
	Heap and Scope
	Assignment
	Assignment
	Assignment
	Getting Into the Details
	Getting Into the Details

