
Getting Into the Details 
def change(inside_number, inside_list): 
inside_number = 5 
inside_list[0] = 7 
return inside_number 

outside_number = 12 
outside_list = [1,2,3] 
result = change(outside_number, outside_list) 

 
 What are the values at the end of outside_number, 
outside_list and result? 
 



Memory Management 
 Quick review: 
 Computers store all data in memory 
 All data is stored in binary form 
 The type of the data (e.g. int, string, image) is used by functions 

to know how to process the data 
 109 can be the number 109, the character ‘m’, a color value, etc. 

 



Memory Management 
 Assigning a new variable allocates memory for its value 
 
a = 19 
 Creates a new integer object with the value 19 
 Makes the name (symbol) a reference that object 

 
a = [1,2,3,4] 
 Creates a new list object with 4 slots 
 Creates 4 new integer objects with values 1,2,3,4 
 Makes each slot in the list reference an integer object 
 Makes the name (symbol) a reference the list object 

 



Heap and Scope 
 All objects are allocated on a heap, a chunk of memory 

reserved for the program 
 Variables exist in the scope of the module or function that 

they are created in 
 A variable name cannot be used outside its scope; that’s a 

different variable 
 E.g. Portland, OR vs. Portland, Maine 

 
 



Assignment 
 Assigning a variable 
 Creates that variable if it doesn’t exist 
 Makes it reference the value given 

 Assigning a variable to another variable 
 a = 17 
 b = a 
 Makes the symbol b reference the same object that a 

references 

 
 



Assignment 
 Assigning a variable 
 Creates that variable if it doesn’t exist 
 Makes it reference the value given 

 Assigning a variable to another variable 
a = 17 
 a references an integer object with value 17 
b = a 
 b references the same object 
a = 18 
 a references a different integer object with value 18 
 (b still references 17)  

 
 



Assignment 
 Assigning a variable to another variable 
a = [17,18] 
 a references a list object referencing objects for 17 and 18 
b = a 
 b references the same list object 
b[0] = 16 
 The shared list now references object with values 16 and 18 

 i.e. a and b both reference [16,18] 
a = [20,21] 
 a references a new list object 
 b still references the old list with [16,18] 

 

 
 



Getting Into the Details 
def change(inside_number, inside_list): 
inside_number = 5 
inside_list[0] = 7 
return inside_number 

outside_number = 12 
outside_list = [1,2,3] 
result = change(outside_number, outside_list) 

 
 Values at the end: 
 outside_number => 12 
 outside_list => [7,2,3] 
 result => 5 

 



Getting Into the Details 
 Passing parameter values into a function works exactly 

the same way that assigning a variable to another variable 
works! 
 The parameter inside the function is assigned the value of the 

variable (or literal) that is passed in 
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