Files

» Variables are stored in RAM (Random Access Memory)
RAM is fast and easy to use and reuse

RAM is volatile: cleared when the program exits

» Files are stored in non-volatile memory
The computer’s magnetic hard drive
A USB stick (a.k.a flash memory)
Optical media (CDs, DVDs)
Non-volatile memory is slow and cheap compared to RAM

Files include programs, your homework, web pages, etc.

Directory Structure
» Modern operating systems (e.g.Windows, MacQOS, iOS)

="z~ gravelieconsulting

store files in a hierarchical tree & s
& dijit
» A path describes the location of a file | 5& s
E.g. \gravelleconsulting\widgets\css\ T B soduocs
Different OSs use / or \ in path names L %;:j;;j‘_—lggj;f;?
] gold_179x98.png
Windows paths start with the drive letter S g i
E.g. C:\home\classes\| 370\ L ey

Absolute paths start at the root of the file system
Relative paths are relative to some location in the tree
E.g.images/crude_oil_179x98.png
» When running a Python script, paths are relative to the
location of that script

Writing to a File

» Conceptually, just like calling print, only we'’re sending
characters to a file instead of to the Python console

» First, open the file
Must specify the file name to open, using a path
If the file is in the same directory as your program, then just

the filename will suffice
f = open(“test.txt”, ‘w’)

Name Date modified Type

A fileio.py 10/6/2016 8:32 AM P,
|| testxt 10/6/20168:32 AM Text Document

The ‘W’ argument tells it we want to open the file for writing

Writing to a File

» Second, write strings to the file
write is 2 method you call on a file object (like f above)

Unlike print, write only takes strings and does not automatically
add a new line

f = open(“test.txt”, ‘w’)

f.write(“This is a string in my file”)

f.write(“This is another string on the same line™)
f.write(“\nThat there is a new line character”)

» Third, close the file
If you don’t close, what you write may be lost!

Remember that files are slow? The system buffers writes (keeps
them in memory) and does them all together in batches

f.close()

Writing to a File

» Files support sequential access
Start at the beginning, one character at a time to the end
Contrast to RAM which can put and get variables anywhere

» Files are opened in different modes
‘W’ : open for writing, replace any existing file by that name
‘a’ : open for appending, add to the end of any existing file
'r’ : open for reading

There are more, but we’ll start there

Reading From a File

» Conceptually, just like calling input, only we're getting
characters from a file instead of from the console
» Same pattern as writing
Open the file
Read from the file
Close the file

» Reading from a file is also sequential, you get each
character in the file in order

» Reading is more complex, just like user input, because you
can’t guarantee what you’ll get

Reading From a File

» read returns the whole file as a string
>>> £ = open("test.txt", 'r')
>>> f.read()

'77\n88\n9%9 100 101\nl1l02\n’

» readline returns the next line
All characters up to and including the next newline “\n’
>>> f = open("test.txt", 'r')
>>> f.readline()
"77\n’
>>> f.readline()
'88\n'
>>> f.readline()
'99 100 101\n'

» readlines returns all lines from the file in a list
>>> £ = open("test.txt", 'r')
>>> f.readlines()
['77\n', '88\n', '99 100 101\n', '102\n']

Reading From a File

» Very common to loop over the lines in a file
f = open("test.txt", 'r')
for line in f.readlines():
do something
f.close()

» So common, there’s a syntactic shortcut
Loop over the file object itself
f = open("test.txt", 'r')
for line in f:
do something
f.close()

Reading From a File

» Often have to convert file strings to data (e.g. numbers)

» Just like converting user input

Note that int() and float() are smart enough to drop whitespace
int(“ 77 \n”’) returns the number 77

» But no magic for multiple numbers in a string

int(“77 88 99”) throws an error

» The split method is quite useful here
Called on a string, pass in a delimiting character
Splits it on every instance of the delimiter into a list of strings
“Me Myself I”.split(‘ ’) returns the list [‘Me’, ‘Myself’, I’]
“A, B, C”.split(€,”) returns thelist [‘A’, ¢ B’, © C’]

Note the spaces are still there

Reading From a File

» The strip method can also be quite useful

Called on a string, removes all preceding and trailing
whitespace

“ Get Out ”.strip() returns the string “Get Out”

	Files
	Directory Structure
	Writing to a File
	Writing to a File
	Writing to a File
	Reading From a File
	Reading From a File
	Reading From a File
	Reading From a File
	Reading From a File

