
Files
 Variables are stored in RAM (Random Access Memory)
 RAM is fast and easy to use and reuse
 RAM is volatile: cleared when the program exits

 Files are stored in non-volatile memory
 The computer’s magnetic hard drive
 A USB stick (a.k.a flash memory)
 Optical media (CDs, DVDs)
 Non-volatile memory is slow and cheap compared to RAM
 Files include programs, your homework, web pages, etc.

Directory Structure
 Modern operating systems (e.g. Windows, MacOS, iOS)

store files in a hierarchical tree
 A path describes the location of a file
 E.g. \gravelleconsulting\widgets\css\
 Different OSs use / or \ in path names
 Windows paths start with the drive letter

 E.g. C:\home\classes\1370\

 Absolute paths start at the root of the file system
 Relative paths are relative to some location in the tree

 E.g. images/crude_oil_179x98.png

 When running a Python script, paths are relative to the
location of that script

Writing to a File
 Conceptually, just like calling print, only we’re sending

characters to a file instead of to the Python console
 First, open the file
 Must specify the file name to open, using a path
 If the file is in the same directory as your program, then just

the filename will suffice
f = open(“test.txt”, ‘w’)

 The ‘w’ argument tells it we want to open the file for writing

Writing to a File
 Second, write strings to the file
 write is a method you call on a file object (like f above)
 Unlike print, write only takes strings and does not automatically

add a new line
f = open(“test.txt”, ‘w’)
f.write(“This is a string in my file”)
f.write(“This is another string on the same line”)
f.write(“\nThat there is a new line character”)

 Third, close the file
 If you don’t close, what you write may be lost!
 Remember that files are slow? The system buffers writes (keeps

them in memory) and does them all together in batches
f.close()

Writing to a File
 Files support sequential access
 Start at the beginning, one character at a time to the end
 Contrast to RAM which can put and get variables anywhere

 Files are opened in different modes
 ‘w’ : open for writing, replace any existing file by that name
 ‘a’ : open for appending, add to the end of any existing file
 ‘r’ : open for reading
 There are more, but we’ll start there

Reading From a File
 Conceptually, just like calling input, only we’re getting

characters from a file instead of from the console
 Same pattern as writing
 Open the file
 Read from the file
 Close the file

 Reading from a file is also sequential, you get each
character in the file in order

 Reading is more complex, just like user input, because you
can’t guarantee what you’ll get

Reading From a File
 read returns the whole file as a string

>>> f = open("test.txt", 'r')
>>> f.read()
'77\n88\n99 100 101\n102\n'

 readline returns the next line
 All characters up to and including the next newline ‘\n’
>>> f = open("test.txt", 'r')
>>> f.readline()
'77\n'
>>> f.readline()
'88\n'
>>> f.readline()
'99 100 101\n'

 readlines returns all lines from the file in a list
>>> f = open("test.txt", 'r')
>>> f.readlines()
['77\n', '88\n', '99 100 101\n', '102\n']

Reading From a File
 Very common to loop over the lines in a file
f = open("test.txt", 'r')
for line in f.readlines():
 # do something
f.close()

 So common, there’s a syntactic shortcut
 Loop over the file object itself
f = open("test.txt", 'r')
for line in f:
 # do something
f.close()

Reading From a File
 Often have to convert file strings to data (e.g. numbers)
 Just like converting user input
 Note that int() and float() are smart enough to drop whitespace
 int(“ 77 \n”) returns the number 77

 But no magic for multiple numbers in a string
 int(“77 88 99”) throws an error

 The split method is quite useful here
 Called on a string, pass in a delimiting character
 Splits it on every instance of the delimiter into a list of strings
 “Me Myself I”.split(‘ ’) returns the list [‘Me’, ‘Myself’, ‘I’]
 “A, B, C”.split(‘,’) returns the list [‘A’, ‘ B’, ‘ C’]

 Note the spaces are still there

Reading From a File
 The strip method can also be quite useful
 Called on a string, removes all preceding and trailing

whitespace
 “ Get Out ”.strip() returns the string “Get Out”

	Files
	Directory Structure
	Writing to a File
	Writing to a File
	Writing to a File
	Reading From a File
	Reading From a File
	Reading From a File
	Reading From a File
	Reading From a File

