
Files
 Variables are stored in RAM (Random Access Memory)
 RAM is fast and easy to use and reuse
 RAM is volatile: cleared when the program exits

 Files are stored in non-volatile memory
 The computer’s magnetic hard drive
 A USB stick (a.k.a flash memory)
 Optical media (CDs, DVDs)
 Non-volatile memory is slow and cheap compared to RAM
 Files include programs, your homework, web pages, etc.

Directory Structure
 Modern operating systems (e.g. Windows, MacOS, iOS)

store files in a hierarchical tree
 A path describes the location of a file
 E.g. \gravelleconsulting\widgets\css\
 Different OSs use / or \ in path names
 Windows paths start with the drive letter

 E.g. C:\home\classes\1370\

 Absolute paths start at the root of the file system
 Relative paths are relative to some location in the tree

 E.g. images/crude_oil_179x98.png

 When running a Python script, paths are relative to the
location of that script

Writing to a File
 Conceptually, just like calling print, only we’re sending

characters to a file instead of to the Python console
 First, open the file
 Must specify the file name to open, using a path
 If the file is in the same directory as your program, then just

the filename will suffice
f = open(“test.txt”, ‘w’)

 The ‘w’ argument tells it we want to open the file for writing

Writing to a File
 Second, write strings to the file
 write is a method you call on a file object (like f above)
 Unlike print, write only takes strings and does not automatically

add a new line
f = open(“test.txt”, ‘w’)
f.write(“This is a string in my file”)
f.write(“This is another string on the same line”)
f.write(“\nThat there is a new line character”)

 Third, close the file
 If you don’t close, what you write may be lost!
 Remember that files are slow? The system buffers writes (keeps

them in memory) and does them all together in batches
f.close()

Writing to a File
 Files support sequential access
 Start at the beginning, one character at a time to the end
 Contrast to RAM which can put and get variables anywhere

 Files are opened in different modes
 ‘w’ : open for writing, replace any existing file by that name
 ‘a’ : open for appending, add to the end of any existing file
 ‘r’ : open for reading
 There are more, but we’ll start there

Reading From a File
 Conceptually, just like calling input, only we’re getting

characters from a file instead of from the console
 Same pattern as writing
 Open the file
 Read from the file
 Close the file

 Reading from a file is also sequential, you get each
character in the file in order

 Reading is more complex, just like user input, because you
can’t guarantee what you’ll get

Reading From a File
 read returns the whole file as a string

>>> f = open("test.txt", 'r')
>>> f.read()
'77\n88\n99 100 101\n102\n'

 readline returns the next line
 All characters up to and including the next newline ‘\n’
>>> f = open("test.txt", 'r')
>>> f.readline()
'77\n'
>>> f.readline()
'88\n'
>>> f.readline()
'99 100 101\n'

 readlines returns all lines from the file in a list
>>> f = open("test.txt", 'r')
>>> f.readlines()
['77\n', '88\n', '99 100 101\n', '102\n']

Reading From a File
 Very common to loop over the lines in a file
f = open("test.txt", 'r')
for line in f.readlines():
 # do something
f.close()

 So common, there’s a syntactic shortcut
 Loop over the file object itself
f = open("test.txt", 'r')
for line in f:
 # do something
f.close()

Reading From a File
 Often have to convert file strings to data (e.g. numbers)
 Just like converting user input
 Note that int() and float() are smart enough to drop whitespace
 int(“ 77 \n”) returns the number 77

 But no magic for multiple numbers in a string
 int(“77 88 99”) throws an error

 The split method is quite useful here
 Called on a string, pass in a delimiting character
 Splits it on every instance of the delimiter into a list of strings
 “Me Myself I”.split(‘ ’) returns the list [‘Me’, ‘Myself’, ‘I’]
 “A, B, C”.split(‘,’) returns the list [‘A’, ‘ B’, ‘ C’]

 Note the spaces are still there

Reading From a File
 The strip method can also be quite useful
 Called on a string, removes all preceding and trailing

whitespace
 “ Get Out ”.strip() returns the string “Get Out”

	Files
	Directory Structure
	Writing to a File
	Writing to a File
	Writing to a File
	Reading From a File
	Reading From a File
	Reading From a File
	Reading From a File
	Reading From a File

