
Conditional Execution 
 We’ve already seen how programs execute 
 Sequentially: one line at a time, top to bottom 
 Repeatedly (iteratively): using a for statement 

 Now we add selective or conditional execution 
 Do this or not, depending on the situation 
 Choices come up all the time in real-world processes (algorithms) 

 Conditional execution uses the if statement, which works just 
the way it sounds: 
x = input(“How old are you?”) 
if x > 39: 

print(“That’s really old”) 
 “x > 39” is the condition (the situation we’re checking) 
 The print statement is executed or not depending on the value in x 



Boolean Data Type and Logical Expressions 
 Boolean is a data type, just like integer 
 Values are True and False, instead of 1, 2, 567, etc. 
 Named for George Boole 

 Arithmetic expressions evaluate to numbers 
 Using arithmetic operators (+, -, %, etc) 
 E.g. 1 + 5 evaluates to 6 

 Logical expressions evaluate to Boolean (True or False) 
 Using relational (comparison) operators 
 3 < 7 evaluates to False (3 is not less than 7) 
 17.4 >= 15 evaluates to True (17.4 is greater than or equal to 15) 
 4 == 4 evaluates to True (4 is equal to to 4) 
 Note that = is assignment, == is comparison 



Relational Operators 
 Equal: == 
 Remember, = is already taken for assignment 

 Not equal: != 
 Greater than: > 
 Less than: < 
 Greater than or equal to: >= 
 Less than or equal to: <= 

 



The Truth about Booleans 
 Just like characters are actually numbers (ASCII codes)… 
 …Booleans are just 0 (False) or 1 (True) to the computer 

 
 For historical reasons, any number that is not 0 is 

considered a True value 
if 7: 

print(“Yes, this will print, because 7 is not 0”) 
 

if 17*4: 
print(“This too”) 
 

if math.cos(2.3): 
print(“Even this”) 

 



Back to Conditions 
 An if condition can be anything that evaluates to True or 

False 
 A literal value 
if True: 

print(“This is silly, it always prints”) 

 A variable with a Boolean value 
raining_today = False 
if raining_today: 

print(“Only prints if the raining_today variable is set to True”) 

 A logical expression 
number = input(“What is your favorite number?”) 
if number == 17: 

print(“Only people who like 17 are worthy to see this”) 

 Also, a function that returns a Boolean value 



Comparing Numbers 
 Integer and floating-point types can be compared 
 8 < 15 evaluates to True 
 6 != 6 evaluates to False 
 2.5 > 5.8 evaluates to False 
 5.9 <= 7 evaluates to True 

 



Comparing Other Data Types 
 Characters are compared by their ASCII value 
 Alphabetical order 
 Except all the uppercase letters are before all the lowercase 

letters 

 Strings are compared character-by-character 
 Again, basically the same way you would alphabetize 
 Because that’s both straightforward and useful 

 Lists are compared item-by-item 
 Lists and strings are both sequences 
 Makes sense to be consistent 



Two-Way Conditional Execution 
 What about choosing between multiple options? 
 Also comes up all the time 
 Can use an else statement together with an if statement 

 
 Again, works in a pretty intuitive way: 

x = input(“How old are you?”) 
if x > 39: 

print(“That’s really old”) 
else: 

print(“How you doin’?”) 



Blocks 
 An if statement controls whether to execute a block of 

code 
 Can be a single statement, or multiple statements 
 Just like with a for loop 

 All statements in the block are indented: 
x = input(“How old are you?”) 
if x > 39: 

print(“That’s really old”) 
x = x – 5 
print(“there, isn’t that better?”) 

else: 
print(“How you doin’?”) 


	Conditional Execution
	Boolean Data Type and Logical Expressions
	Relational Operators
	The Truth about Booleans
	Back to Conditions
	Comparing Numbers
	Comparing Other Data Types
	Two-Way Conditional Execution
	Blocks

