
Conditional Execution 
 We’ve already seen how programs execute 
 Sequentially: one line at a time, top to bottom 
 Repeatedly (iteratively): using a for statement 

 Now we add selective or conditional execution 
 Do this or not, depending on the situation 
 Choices come up all the time in real-world processes (algorithms) 

 Conditional execution uses the if statement, which works just 
the way it sounds: 
x = input(“How old are you?”) 
if x > 39: 

print(“That’s really old”) 
 “x > 39” is the condition (the situation we’re checking) 
 The print statement is executed or not depending on the value in x 



Boolean Data Type and Logical Expressions 
 Boolean is a data type, just like integer 
 Values are True and False, instead of 1, 2, 567, etc. 
 Named for George Boole 

 Arithmetic expressions evaluate to numbers 
 Using arithmetic operators (+, -, %, etc) 
 E.g. 1 + 5 evaluates to 6 

 Logical expressions evaluate to Boolean (True or False) 
 Using relational (comparison) operators 
 3 < 7 evaluates to False (3 is not less than 7) 
 17.4 >= 15 evaluates to True (17.4 is greater than or equal to 15) 
 4 == 4 evaluates to True (4 is equal to to 4) 
 Note that = is assignment, == is comparison 



Relational Operators 
 Equal: == 
 Remember, = is already taken for assignment 

 Not equal: != 
 Greater than: > 
 Less than: < 
 Greater than or equal to: >= 
 Less than or equal to: <= 

 



The Truth about Booleans 
 Just like characters are actually numbers (ASCII codes)… 
 …Booleans are just 0 (False) or 1 (True) to the computer 

 
 For historical reasons, any number that is not 0 is 

considered a True value 
if 7: 

print(“Yes, this will print, because 7 is not 0”) 
 

if 17*4: 
print(“This too”) 
 

if math.cos(2.3): 
print(“Even this”) 

 



Back to Conditions 
 An if condition can be anything that evaluates to True or 

False 
 A literal value 
if True: 

print(“This is silly, it always prints”) 

 A variable with a Boolean value 
raining_today = False 
if raining_today: 

print(“Only prints if the raining_today variable is set to True”) 

 A logical expression 
number = input(“What is your favorite number?”) 
if number == 17: 

print(“Only people who like 17 are worthy to see this”) 

 Also, a function that returns a Boolean value 



Comparing Numbers 
 Integer and floating-point types can be compared 
 8 < 15 evaluates to True 
 6 != 6 evaluates to False 
 2.5 > 5.8 evaluates to False 
 5.9 <= 7 evaluates to True 

 



Comparing Other Data Types 
 Characters are compared by their ASCII value 
 Alphabetical order 
 Except all the uppercase letters are before all the lowercase 

letters 

 Strings are compared character-by-character 
 Again, basically the same way you would alphabetize 
 Because that’s both straightforward and useful 

 Lists are compared item-by-item 
 Lists and strings are both sequences 
 Makes sense to be consistent 



Two-Way Conditional Execution 
 What about choosing between multiple options? 
 Also comes up all the time 
 Can use an else statement together with an if statement 

 
 Again, works in a pretty intuitive way: 

x = input(“How old are you?”) 
if x > 39: 

print(“That’s really old”) 
else: 

print(“How you doin’?”) 



Blocks 
 An if statement controls whether to execute a block of 

code 
 Can be a single statement, or multiple statements 
 Just like with a for loop 

 All statements in the block are indented: 
x = input(“How old are you?”) 
if x > 39: 

print(“That’s really old”) 
x = x – 5 
print(“there, isn’t that better?”) 

else: 
print(“How you doin’?”) 


	Conditional Execution
	Boolean Data Type and Logical Expressions
	Relational Operators
	The Truth about Booleans
	Back to Conditions
	Comparing Numbers
	Comparing Other Data Types
	Two-Way Conditional Execution
	Blocks

