
Checking Multiple Conditions

 Conditional code often relies on a value being between
two other values

 Consider these conditions:
 Free shipping for orders over $25

 10 items or less

 Children ages 3 to 11 allowed on play equipment

 What is the appropriate logical expression for each?

Checking Multiple Conditions

 Conditional code often relies on a value being between
two other values

 Consider these conditions:
 Free shipping for orders over $25
order_total > 25.0
 10 items or less
itemCount <= 10
 Children ages 3 to 11 allowed on play equipment
(age >= 3) and (age <= 11)

 In the third example, we need to combine two logical
expressions into one

Complex Logical Expressions
 Logical operators enable you to combine logical

expressions
 The result is a logical expression (evaluates to True or False)

(age >= 3) and (age < 11)
(age >= 3) or (age < 11)
not (age >= 3)
…which is the same as (age < 3)

 and and or are binary operators (2 operands)
 and: True only if both operands are True
 or: True if either operand is True, or both

 not is a unary operator (1 operand)
 True if the operand is False, and vice versa

Car Insurance Example
 Determine the policy premium based on the following

rules:

 Five conditions with five outcomes

Gender Age Annual Premium

Male Under 21 1500 + 200 for every ticket on record

Male 21 to 29 1200 + 100 for every ticket on record

Male 30 and older 1000 + 100 for every ticket on record

Female Under 21 1200 + 200 for every ticket on record

Female 21 or older 1000 + 100 for every ticket on record

Design Questions
 What are the five conditions?
 Are they mutually exclusive?
 Do they cover all possibilities?

 What are the five outcomes that go along with those
conditions?

 What variables (data) do the conditions and outcomes
rely on?

From Design to Code
 Five conditions = five branches in an if-else tree
 Five outcomes = the bodies of those branches
if (gender == ‘M’) and (age < 21):

premium = 1500 + (200 * tickets)
elif (gender == ‘M’) and (age >=21) and (age < 29):
 premium = 1200 + (100 * tickets)
…

 Simplify! In the second branch, we already know that they
aren’t in the M under 21 group, so need to check again:
if (gender == ‘M’) and (age < 21):

premium = 1500 + (200 * tickets)
elif (gender == ‘M’) and (age >=21) and (age < 29):
 premium = 1200 + (100 * tickets)
…

Alternate Design

 Instead of dividing the people into 5 groups:
 Divide into two groups first (by gender)
 Then divide those into groups (by age)

Alternate Design

 Instead of dividing the people into 5 groups:
 Divide into two groups first (by gender)
 Then divide those into groups (by age)

 This results in a set of nested conditions
 gender == ‘M’

 age < 21
 (age >= 21) and(age < 30)
 age >= 30

 gender == ‘F’
 age < 21
 age >= 21

 Which can be converted into nested if-else trees

Range Checking
 Logical operators can be used to make arbitrarily

complex expressions
 E.g.
(x > 3) and (y <= 45) or (x == 15) and (y < x) etc…

 But checking to see if a number is between two others is

one of the most common

Order of Precedence
 Just like with arithmetic expressions
 Evaluated from left to right
 Arithmetic, then relational (comparisons), then logical
 Parentheses can override precedence

Order of Precedence
 Just like with arithmetic expressions
 Evaluated from left to right
 Complete order of precedence (follows common sense)

 *, /, //, %
 +, -
 <, <=, >=, >, ==, != (relational comparisons)
 not
 and
 or

 Parentheses can override precedence

Common Error

 The variable x is equal to 4 or 5:
 Incorrect: x == 4 or 5
 Correct: (x == 4) or (x == 5)

 The former sounds right in English, so is very common

mistake
 According to the order of precedence, it is evaluated as:
(x == 4) or 5
 No matter what x is, this evaluates to 5
 Any number that is not 0 is considered a True value

Common Error

 How would:
x == (4 || 5)
 Be evaluated?

C++ Programming: Program Design Including
Data Structures, Fourth Edition

15

Common Error: = vs. ==
 C++ allows you to use any expression that can be

evaluated to either true or false as an expression in
the if statement:
if (x = 5)

 cout << "The value is five." << endl;

 Very difficult mistake to catch
 It is not a syntax error
 It is a logical error

Floating-Point Equality
 Comparison of floating-point numbers for equality may

not behave as you would expect
 Example:

 1.0 == 3.0/7.0 + 2.0/7.0 + 2.0/7.0 evaluates to False

 Why?
3.0/7.0 + 2.0/7.0 + 2.0/7.0 == 0.99999999999999989

 Solution: use a tolerance value
 To compare x and y (using the build-in absolute value function):

abs(x – y) < 0.000001

	Checking Multiple Conditions
	Checking Multiple Conditions
	Complex Logical Expressions
	Car Insurance Example
	Design Questions
	From Design to Code
	Alternate Design
	Slide Number 8
	Alternate Design
	Range Checking
	Order of Precedence
	Order of Precedence
	Common Error
	Common Error
	Common Error: = vs. ==
	Floating-Point Equality

