
Checking Multiple Conditions

 Conditional code often relies on a value being between
two other values

 Consider these conditions:
 Free shipping for orders over $25

 10 items or less

 Children ages 3 to 11 allowed on play equipment

 What is the appropriate logical expression for each?

Checking Multiple Conditions

 Conditional code often relies on a value being between
two other values

 Consider these conditions:
 Free shipping for orders over $25
order_total > 25.0
 10 items or less
itemCount <= 10
 Children ages 3 to 11 allowed on play equipment
(age >= 3) and (age <= 11)

 In the third example, we need to combine two logical
expressions into one

Complex Logical Expressions
 Logical operators enable you to combine logical

expressions
 The result is a logical expression (evaluates to True or False)

(age >= 3) and (age < 11)
(age >= 3) or (age < 11)
not (age >= 3)
…which is the same as (age < 3)

 and and or are binary operators (2 operands)
 and: True only if both operands are True
 or: True if either operand is True, or both

 not is a unary operator (1 operand)
 True if the operand is False, and vice versa

Car Insurance Example
 Determine the policy premium based on the following

rules:

 Five conditions with five outcomes

Gender Age Annual Premium

Male Under 21 1500 + 200 for every ticket on record

Male 21 to 29 1200 + 100 for every ticket on record

Male 30 and older 1000 + 100 for every ticket on record

Female Under 21 1200 + 200 for every ticket on record

Female 21 or older 1000 + 100 for every ticket on record

Design Questions
 What are the five conditions?
 Are they mutually exclusive?
 Do they cover all possibilities?

 What are the five outcomes that go along with those
conditions?

 What variables (data) do the conditions and outcomes
rely on?

From Design to Code
 Five conditions = five branches in an if-else tree
 Five outcomes = the bodies of those branches
if (gender == ‘M’) and (age < 21):

premium = 1500 + (200 * tickets)
elif (gender == ‘M’) and (age >=21) and (age < 29):
 premium = 1200 + (100 * tickets)
…

 Simplify! In the second branch, we already know that they
aren’t in the M under 21 group, so need to check again:
if (gender == ‘M’) and (age < 21):

premium = 1500 + (200 * tickets)
elif (gender == ‘M’) and (age >=21) and (age < 29):
 premium = 1200 + (100 * tickets)
…

Alternate Design

 Instead of dividing the people into 5 groups:
 Divide into two groups first (by gender)
 Then divide those into groups (by age)

Alternate Design

 Instead of dividing the people into 5 groups:
 Divide into two groups first (by gender)
 Then divide those into groups (by age)

 This results in a set of nested conditions
 gender == ‘M’

 age < 21
 (age >= 21) and(age < 30)
 age >= 30

 gender == ‘F’
 age < 21
 age >= 21

 Which can be converted into nested if-else trees

Range Checking
 Logical operators can be used to make arbitrarily

complex expressions
 E.g.
(x > 3) and (y <= 45) or (x == 15) and (y < x) etc…

 But checking to see if a number is between two others is

one of the most common

Order of Precedence
 Just like with arithmetic expressions
 Evaluated from left to right
 Arithmetic, then relational (comparisons), then logical
 Parentheses can override precedence

Order of Precedence
 Just like with arithmetic expressions
 Evaluated from left to right
 Complete order of precedence (follows common sense)

 *, /, //, %
 +, -
 <, <=, >=, >, ==, != (relational comparisons)
 not
 and
 or

 Parentheses can override precedence

Common Error

 The variable x is equal to 4 or 5:
 Incorrect: x == 4 or 5
 Correct: (x == 4) or (x == 5)

 The former sounds right in English, so is very common

mistake
 According to the order of precedence, it is evaluated as:
(x == 4) or 5
 No matter what x is, this evaluates to 5
 Any number that is not 0 is considered a True value

Common Error

 How would:
x == (4 || 5)
 Be evaluated?

C++ Programming: Program Design Including
Data Structures, Fourth Edition

15

Common Error: = vs. ==
 C++ allows you to use any expression that can be

evaluated to either true or false as an expression in
the if statement:
if (x = 5)

 cout << "The value is five." << endl;

 Very difficult mistake to catch
 It is not a syntax error
 It is a logical error

Floating-Point Equality
 Comparison of floating-point numbers for equality may

not behave as you would expect
 Example:

 1.0 == 3.0/7.0 + 2.0/7.0 + 2.0/7.0 evaluates to False

 Why?
3.0/7.0 + 2.0/7.0 + 2.0/7.0 == 0.99999999999999989

 Solution: use a tolerance value
 To compare x and y (using the build-in absolute value function):

abs(x – y) < 0.000001

	Checking Multiple Conditions
	Checking Multiple Conditions
	Complex Logical Expressions
	Car Insurance Example
	Design Questions
	From Design to Code
	Alternate Design
	Slide Number 8
	Alternate Design
	Range Checking
	Order of Precedence
	Order of Precedence
	Common Error
	Common Error
	Common Error: = vs. ==
	Floating-Point Equality

