
Another Problem 

 Tip Calculator 
 A trivial example of a calculation 
 Better implementation: show me the tip amounts for 12%, 15%, 

18% and 20% all at once 

 
 How do we automate this? 
 Identify the data, known and unknown 
 Describe the interaction with the machine in detail (the 

appropriate level of abstraction) 
 Work out the relationships between the data (equations) 
 Write the algorithm for the machine to follow 



A General-Purpose Machine 
 Programmable machines (computers) rule the world! 
 Program 
 Simplified, a sequence of instructions 
 Each instruction tells the computer to perform an operation 
 Levels of abstraction 

 Machine code: instructions that the hardware can actually perform 
 Arithmetic, storing and moving numbers 

 Assembly language: human readable machine code 
 High-level languages: layers of abstraction create instructions that 

represent multiple instructions at the machine level 
 E.g. “go buy a car” vs. “open the door, take a step, etc” 

 Many, many high-level languages, with different abstractions 
 C  >  C++  >  Java/C#  >  Scripting Languages (JavaScript, Python) 



Python Programming 
 Python 3 
 One of the “scripting languages” 
 Higher level of abstraction 
 Closer to the problem, more productive 
 Less control, less performance 
 Easier to abstract away details that do matter and get the 

solution wrong! 



Tools 
 A text editor to write the code 
 Code goes in plain old text files, extension .py by convention 
 IDLE to start (comes with Python) 
 Notepad++, Atom, Visual Studio Code, Sublime Text… 

 An interpreter to run code 
 The interpreter turns Python instructions into machine-level 

instructions as the program runs 
 Contrast: compiled languages like C++ convert to machine 

code before you run the program 
 More performance, less flexibility 

 Python code can be done interactively (one line at a time) 
or by running whole files 
 The former is just for testing, exploring 



Back to our problem 
 We need…A way to interact! 
 Command line first 
 Print to the screen, read what the user types back 



Back to our problem 
 A bit more detail (moving to a lower level of abstraction) 
 The computer can perform certain actions 
 How do we command it to do so? 

 By naming them! (sensible, right?) 
 Simon says… 

 



Back to our problem 
 A bit more detail (moving to a lower level of abstraction) 
 The computer can perform certain actions 
 How do we command it to do so? 

 By naming them! (sensible, right?) 
 Simon says… 

 Some commands need more information 
 Stand up does not 
 Jump up and down does not 
 Raise your hand does 
 Write does 
 We call that extra information parameters 



Back to our problem 
 The actions the computer can perform are called 

functions 
 We call a function to make the computer perform it 
jump() 
 Okay, it doesn’t know how to jump 
print() 
 Print needs more information! 
print(17) 
print(“This is a string”) 

 Specifically, it requires a piece of data to print 
 Numbers are data, so are strings of characters 
 Quotes tell Python to treat the characters as string data 

 



Back to our problem 
 We need…A way to store and manipulate data! 
 Variables 

 Named “boxes” that hold pieces of information (data) 
 An assignment statement tells Python to create a variable, name it, and 

put a value in it 
name = “Tom” 

 
 Variables can be used anywhere you can use data 
print(name) 

 
 This tells the computer to print the value in that variable 
 Implied: go get the value from the variable, then pass it into the function 



Back to our problem 
 We need…A way to store and manipulate data! 
 In addition to functions, we also use operators 

 Just a different syntax, that looks like familiar math equations 
 Each operator takes two arguments (one on the left, one on the right) 

 The assignment operator (=) 
age = 17 

 Puts a value into a variable, creating it if necessary 
 Not the same as mathematical equality! 
age = 8 

age = 9 

 Makes no sense in math, here means to assign, then reassign 
(overwrite) 
 



Back to our problem 
 We need…A way to store and manipulate data! 
 Arithmetic operators (+, -, *, /, //, %) 

 The expression 6 + 7 evaluates to 13 
 The expression 14 / 4 evaluates to 3.5 

 Expressions can be chained together 
 6 + 8 + 2 + 9 evaluates to 25 
 Tells the computer to add 6 and 8 (evaluates to 14) 
 Then add 14 and 2 (evaluates to 16) 
 Then add 16 and 9 (evaluates to 25) 

 Follows standard arithmetic order of operations 
 Multiplication and division first, parenthesis to force grouping 



Back to our problem 
 We need…A way to get user input! 
 Still on the command line 

 The function input()  

 Tells the program to wait for the user to type, then give us the 
characters that the user typed 

 Functions can take in data (parameters) 
 Functions can also return data 

 Just like 2 + 3 evaluates to 5 
 input() evaluates to whatever the user typed 

 Store the result of input() just like any expression 
number = 2 + 3 

name = input() 
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