
Another Problem

 Tip Calculator
 A trivial example of a calculation
 Better implementation: show me the tip amounts for 12%, 15%,

18% and 20% all at once

 How do we automate this?
 Identify the data, known and unknown
 Describe the interaction with the machine in detail (the

appropriate level of abstraction)
 Work out the relationships between the data (equations)
 Write the algorithm for the machine to follow

A General-Purpose Machine
 Programmable machines (computers) rule the world!
 Program
 Simplified, a sequence of instructions
 Each instruction tells the computer to perform an operation
 Levels of abstraction

 Machine code: instructions that the hardware can actually perform
 Arithmetic, storing and moving numbers

 Assembly language: human readable machine code
 High-level languages: layers of abstraction create instructions that

represent multiple instructions at the machine level
 E.g. “go buy a car” vs. “open the door, take a step, etc”

 Many, many high-level languages, with different abstractions
 C > C++ > Java/C# > Scripting Languages (JavaScript, Python)

Python Programming
 Python 3
 One of the “scripting languages”
 Higher level of abstraction
 Closer to the problem, more productive
 Less control, less performance
 Easier to abstract away details that do matter and get the

solution wrong!

Tools
 A text editor to write the code
 Code goes in plain old text files, extension .py by convention
 IDLE to start (comes with Python)
 Notepad++, Atom, Visual Studio Code, Sublime Text…

 An interpreter to run code
 The interpreter turns Python instructions into machine-level

instructions as the program runs
 Contrast: compiled languages like C++ convert to machine

code before you run the program
 More performance, less flexibility

 Python code can be done interactively (one line at a time)
or by running whole files
 The former is just for testing, exploring

Back to our problem
 We need…A way to interact!
 Command line first
 Print to the screen, read what the user types back

Back to our problem
 A bit more detail (moving to a lower level of abstraction)
 The computer can perform certain actions
 How do we command it to do so?

 By naming them! (sensible, right?)
 Simon says…

Back to our problem
 A bit more detail (moving to a lower level of abstraction)
 The computer can perform certain actions
 How do we command it to do so?

 By naming them! (sensible, right?)
 Simon says…

 Some commands need more information
 Stand up does not
 Jump up and down does not
 Raise your hand does
 Write does
 We call that extra information parameters

Back to our problem
 The actions the computer can perform are called

functions
 We call a function to make the computer perform it
jump()
 Okay, it doesn’t know how to jump
print()
 Print needs more information!
print(17)
print(“This is a string”)

 Specifically, it requires a piece of data to print
 Numbers are data, so are strings of characters
 Quotes tell Python to treat the characters as string data

Back to our problem
 We need…A way to store and manipulate data!
 Variables

 Named “boxes” that hold pieces of information (data)
 An assignment statement tells Python to create a variable, name it, and

put a value in it
name = “Tom”

 Variables can be used anywhere you can use data
print(name)

 This tells the computer to print the value in that variable
 Implied: go get the value from the variable, then pass it into the function

Back to our problem
 We need…A way to store and manipulate data!
 In addition to functions, we also use operators

 Just a different syntax, that looks like familiar math equations
 Each operator takes two arguments (one on the left, one on the right)

 The assignment operator (=)
age = 17

 Puts a value into a variable, creating it if necessary
 Not the same as mathematical equality!
age = 8

age = 9

 Makes no sense in math, here means to assign, then reassign
(overwrite)

Back to our problem
 We need…A way to store and manipulate data!
 Arithmetic operators (+, -, *, /, //, %)

 The expression 6 + 7 evaluates to 13
 The expression 14 / 4 evaluates to 3.5

 Expressions can be chained together
 6 + 8 + 2 + 9 evaluates to 25
 Tells the computer to add 6 and 8 (evaluates to 14)
 Then add 14 and 2 (evaluates to 16)
 Then add 16 and 9 (evaluates to 25)

 Follows standard arithmetic order of operations
 Multiplication and division first, parenthesis to force grouping

Back to our problem
 We need…A way to get user input!
 Still on the command line

 The function input()

 Tells the program to wait for the user to type, then give us the
characters that the user typed

 Functions can take in data (parameters)
 Functions can also return data

 Just like 2 + 3 evaluates to 5
 input() evaluates to whatever the user typed

 Store the result of input() just like any expression
number = 2 + 3

name = input()

	Another Problem
	A General-Purpose Machine
	Python Programming
	Tools
	Back to our problem
	Back to our problem
	Back to our problem
	Back to our problem
	Back to our problem
	Back to our problem
	Back to our problem
	Back to our problem

