Cipher (si-fer)
noun

1. An algorithm for performing encryption or decryption - a series of well-defined steps that can be followed as a procedure.

Hail Caesar!

- Caesar Cipher

- One of the earliest known examples of text encryption
- Given a text message and an integer key
- Substitute each letter in a message with the letter key positions down the alphabet
b If you hit the end of the alphabet, wrap around
- Do the reverse to decrypt the message
- Decrypt this message, with the a key of 3:
- L olnh fkhhvh

Encoding vs. Encryption

- Encoding (like we talked about last week)
- Representing data (e.g. text) in another system (e.g. binary)
- Goal is to make it usable, simple, efficient, etc.
- Encryption
- Representing data (e.g. text) in another system (e.g. still text)
- Goal is to make it really, really hard to figure out!

Secret-er

- Caesar is pretty limited, because it maps from the 26 characters to the same 26 characters
- Better: map from characters to an infinite number of integers
, (Kind of like the ASCII table)
- Activity: Roll your own encryption

Algorithms and keys

- $A=I, B=2$, etc
- Encoding, not encryption
- An algorithm, but no key (same every time)
- $\mathrm{A}=$ key, $\mathrm{B}=$ key +l , etc
- Encryption, only meant to be read by people who know both the algorithm and the key
- Lousy encryption, though.
- Partner discussion:
- How would you decrypt a Caesar Cipher encrypted message if you didn't know the key?
- How would you decrypt a message using that key + I cipher if you didn't know the key?

Cracking the code

- Here's my encryption algorithm:
- Select two integer keys, key1 and key2
- For each character in the original message
- Look up the ASCII value for that character
- Multiply that value by key1 and add key2
- Add the resulting number to the encrypted message
- Activity: Dastardly criminals!

The Punchline

- Character-by-character encryption is all bad, actually
- It gives the attacker a fixed set of numbers to figure out
- Languages have well known distributions of letters
- Imagine a program that just counts how many of each letter in all the English digital books in the world
- Makes it pretty easy to figure out which number is which letter
- Secret key encryption is also generally bad
- Have to communicate the key secretly, which is another potential point of attack
- Asymmetric (public-key) encryption is much better

