
Structured data
• Parallel arrays aren’t a natural fit for heterogeneous

rows of data
– One set of names, one set of positions, one set of scores

• What we have is structured data
– Name, position, score for each employee
– One set of employees

• For a single employee we could do:
name = “Tom”

position = “Scapegoat”

review_score = 1

– Allocates memory space for 2 strings and 1 int
• Keeps a named reference to each location

Using classes
• It would be better to create one object that holds all

three pieces of information
– Could use a list, emp = [‘Tom’, ‘Scapegoat’, 1]
– But lists are a better fit for homogenous data

• Python provides classes to group related,
heterogeneous data together in a more sensible way

 emp = employee()

 emp.name = “Tom”

 emp.position = “Scapegoat”

 emp.review_score = 1

– The first statement creates a new employee class object
– The rest use the member access operator (.) to work with

specific parts (data members) in that object

Using classes
• But where did the class employee come from?

– We need to define it!
 class employee:

 def __init__(self):

 self.name = “”

 self.position = “”

 self.review_score = 0

• This is a class definition
– Acts as a blueprint for creating objects
– First, we give the class a name
– Next, we define a function called __init__ inside the class
– __init__ is called the constructor

• (Don’t worry about the odd name yet)

Using classes
class employee:

 def __init__(self):

 self.name = “”

 self.position = “”

 self.review_score = 0

• The constructor is a function that is executed
whenever you create a new object of this class
– i.e. when you say emp = employee()
– Like any function, it can do anything you want
– But generally, it creates and assigns default values to the

data members

• self is a reference to the object being created
– So self.name is the variable name inside the new object

More specific details
• Defining the class creates a blueprint

– No memory is allocated yet
– The class is a new data type (like integers, strings, etc):

• To create a new integer:
x = 9

• To create a new employee:
emp = employee()

• This variable declaration:
– Allocates memory space for an instance of the class

• Contains 2 string variables and 1 integer variable

– Keeps a named reference (emp) to that memory space
– A class instance is also called an object

More specific details
• With lists, we talked about accessing particular

elements in this list
– Using the subscript operator []
– E.g. this_list[15]

• With class objects, you can access particular data
members
– The member access operator (.) indicates part of an object
– The parts are used like any other variable

emp.name = “peter”

emp.position = input(“Position for {}?”.format(emp.name))

emp.review_score = emp.review_score + 1

A list of objects
• Now that we’ve defined a class for employee

– We use it like any other data type
– We can have one employee, or a list of employees

emps = [employee(), employee(), employee()]

– Creates a list object and three employee objects
• Each employee object has 2 strings and 1 int in it

• Combine subscript and member access operators

– The 2nd employee’s name:
• emps[1].name

– the first employee’s review score:
• emps[0].review_score

Exercise: arrays of objects
• Define a class to hold a point (x, y)

– Like you would use to specify points on the screen

• Write a statements to:
– Create a point
– Set its data members to (1,4)

• That is x is 1, y is 4

– Create a list of 100 points
– Set the second point data members to (5, 3)
– Print the values of all 100 points to the screen

	Structured data
	Using classes
	Using classes
	Using classes
	More specific details
	More specific details
	A list of objects
	Exercise: arrays of objects

