- Model the problem in terms of objects (nouns)
- Consider the actions that go with each object (verbs)
- 3. Identify the data that belongs to each object
- Design classes that combine data and actions

- Model the problem in terms of objects (nouns)
- Consider the actions that go with each object (verbs)
- 3. Identify the data that belongs to each object
- 4. Design classes that combine data and actions
- Imagine that you are a calendar program.
 - What objects do you work with?
 - What actions do you need to perform?
 - (Think about different levels of abstraction)
 - What specific pieces of information make up the objects you listed?

- Model the problem in terms of objects (nouns)
- 2. Consider the actions that go with each object (verbs)
- 3. Identify the data that belongs to each object
- 4. Design classes that combine data and actions
- Classes combine data and functionality
 - Data members hold information (like we've already seen)
 - Members can also be functions!
 - (Like the constructor we keep making)
 - Functions that are part of a class are called *methods*

- Model the problem in terms of objects (nouns)
- 2. Consider the actions that go with each object (verbs)
- 3. Identify the data that belongs to each object
- What specific pieces of information make up the objects you listed?

Using a class to combine data and actions

- The string class has private data members to store the characters that make up a string
 - ▶ We don't know how it stores them and we don't care!
 - ► (They're private)
- The string class has public methods to do stuff
 - Things like split() and format()
 - Methods are called on an object of the class
 - string provides lots of built-in functionality for your use
 - Good classes are simple, flexible and general
 - https://docs.python.org/3/library/stdtypes.html#string-methods

