Back to the point class

» Pointis a very useful class

More generally, vector
Vectors are the basis for all spatial simulations

2d,3d and even higher dimensions that we can't easily visualize

» For simplicity, we’ll stick with 2d
X,y gives a direction and distance pf \

Starting from (0,0), it specifiesa point '

: : : : Y :
But it could just as easily specify movement from a point

X

Adding vectorsiis just adding x and y
Some examples...

A Usetul vector class

» Simple,general and flexible

2 data members x and y

» Methods for all the basic arithmetic operations
These should all return a new vector (non-mutating)
add(other_vector)
subtract(other_vector)
multiply(scalar) # scalar is a number,not a vector
magnitude() # the length of the vector

normalized() # the same vector, with length one

A Usetul vector class

» Starting class to work with:

class vector:
def init (self):

self.x = ©
self.y = 0

A Usetul vector class

» First, let’s write a normal function that adds two vectors

Pass in two vectors as parameters

Create a new local variable vector inside

Assign the new vector x to the sum of the other two x
Assign the new vector y to the sum of the other two y

Return the new vector

A Usetul vector class

» First, let’s write a normal function that adds two vectors
def add vectors(vl, v2):
sum = vector()
sum.X = v1.X + v2.X
sum.y = vl.y + Vv2.y
return sum

» Called like:

add vectors(position, movement)

A Usetul vector class

» Methods are just functions that are part of a class
» The big difference!
Methods are called on an object of that class

Function:add_vectors(position, movement)

Method: position.add vectors(movement)

» Think of it as telling the object to do something

E.g.“hey position,add movement to yourself”

A Usetul vector class

» The method version:
Is defined inside the class

Replaces the first parameter (one of the vectors) with self
self is a reference to the object the method is called on

def add vectors(self, v2):
sum = vector()
sum.x = self.x + v2.X
Sum.y = self.y + v2.y
return sum

» Called like:
position.add vectors(movement)

Note that you only pass in the parameters besides self (v2 here)

A Usetul vector class

» Could also do the self-mutating version

Changes itself rather than returning a new vector object

def add vectors(self, v2):
self.x = self.x + v2.X
self.y = self.y + v2.y
no return necessary

That constructor

» We started our class with a constructor

A method that is called automatically whenever we create an
object of the class

Thespecialname init tells Python to call this
automatically

def init (self):
self.x = 0
self.y = 0

This is called the default constructor

That constructor

» Alternatively,we could have a constructor that takes
additional parameters
def init (self, x, y):
self.x = X
self.y =y
» This parameterized constructor allows us to specify the
initial values, like:
v = vector(3, 4)
(note that you don’t pass in self, it’s already there!)
» The one we did before,with no additional parameters,is
the default constructor

v = vector()

	Back to the point class
	A Useful vector class
	A Useful vector class
	A Useful vector class
	A Useful vector class
	A Useful vector class
	A Useful vector class
	A Useful vector class
	That constructor
	That constructor

