
Back to the point class

 Point is a very useful class
 More generally, vector
 Vectors are the basis for all spatial simulations

 2d, 3d and even higher dimensions that we can’t easily visualize

 For simplicity, we’ll stick with 2d
 x, y gives a direction and distance
 Starting from (0,0), it specifies a point
 But it could just as easily specify movement from a point

 Adding vectors is just adding x and y

 Some examples…

A Useful vector class
 Simple, general and flexible
 2 data members x and y

 Methods for all the basic arithmetic operations
 These should all return a new vector (non-mutating)
 add(other_vector)
 subtract(other_vector)
 multiply(scalar) # scalar is a number, not a vector
 magnitude() # the length of the vector
 normalized() # the same vector, with length one

A Useful vector class
 Starting class to work with:
class vector:
 def __init__(self):
 self.x = 0
 self.y = 0

A Useful vector class
 First, let’s write a normal function that adds two vectors

1. Pass in two vectors as parameters
2. Create a new local variable vector inside
3. Assign the new vector x to the sum of the other two x
4. Assign the new vector y to the sum of the other two y
5. Return the new vector

A Useful vector class
 First, let’s write a normal function that adds two vectors
def add_vectors(v1, v2):
sum = vector()
sum.x = v1.x + v2.x
sum.y = v1.y + v2.y
return sum

 Called like:
add_vectors(position, movement)

A Useful vector class
 Methods are just functions that are part of a class
 The big difference!
 Methods are called on an object of that class
 Function: add_vectors(position, movement)

 Method: position.add_vectors(movement)

 Think of it as telling the object to do something
 E.g. “hey position, add movement to yourself”

A Useful vector class
 The method version:
 Is defined inside the class
 Replaces the first parameter (one of the vectors) with self

 self is a reference to the object the method is called on
def add_vectors(self, v2):

sum = vector()
sum.x = self.x + v2.x
Sum.y = self.y + v2.y
return sum

 Called like:
position.add_vectors(movement)
 Note that you only pass in the parameters besides self (v2 here)

A Useful vector class
 Could also do the self-mutating version
 Changes itself rather than returning a new vector object

def add_vectors(self, v2):
self.x = self.x + v2.x
self.y = self.y + v2.y
no return necessary

That constructor
 We started our class with a constructor
 A method that is called automatically whenever we create an

object of the class
 The special name __init__ tells Python to call this

automatically
def __init__(self):
 self.x = 0
 self.y = 0

 This is called the default constructor

That constructor
 Alternatively, we could have a constructor that takes

additional parameters
def __init__(self, x, y):
 self.x = x
 self.y = y

 This parameterized constructor allows us to specify the
initial values, like:
v = vector(3, 4)
 (note that you don’t pass in self, it’s already there!)

 The one we did before, with no additional parameters, is
the default constructor
v = vector()

	Back to the point class
	A Useful vector class
	A Useful vector class
	A Useful vector class
	A Useful vector class
	A Useful vector class
	A Useful vector class
	A Useful vector class
	That constructor
	That constructor

