
Back to the point class

 Point is a very useful class
 More generally, vector
 Vectors are the basis for all spatial simulations

 2d, 3d and even higher dimensions that we can’t easily visualize

 For simplicity, we’ll stick with 2d
 x, y gives a direction and distance
 Starting from (0,0), it specifies a point
 But it could just as easily specify movement from a point

 Adding vectors is just adding x and y

 Some examples…

A Useful vector class
 Simple, general and flexible
 2 data members x and y

 Methods for all the basic arithmetic operations
 These should all return a new vector (non-mutating)
 add(other_vector)
 subtract(other_vector)
 multiply(scalar) # scalar is a number, not a vector
 magnitude() # the length of the vector
 normalized() # the same vector, with length one

A Useful vector class
 Starting class to work with:
class vector:
 def __init__(self):
 self.x = 0
 self.y = 0

A Useful vector class
 First, let’s write a normal function that adds two vectors

1. Pass in two vectors as parameters
2. Create a new local variable vector inside
3. Assign the new vector x to the sum of the other two x
4. Assign the new vector y to the sum of the other two y
5. Return the new vector

A Useful vector class
 First, let’s write a normal function that adds two vectors
def add_vectors(v1, v2):
sum = vector()
sum.x = v1.x + v2.x
sum.y = v1.y + v2.y
return sum

 Called like:
add_vectors(position, movement)

A Useful vector class
 Methods are just functions that are part of a class
 The big difference!
 Methods are called on an object of that class
 Function: add_vectors(position, movement)

 Method: position.add_vectors(movement)

 Think of it as telling the object to do something
 E.g. “hey position, add movement to yourself”

A Useful vector class
 The method version:
 Is defined inside the class
 Replaces the first parameter (one of the vectors) with self

 self is a reference to the object the method is called on
def add_vectors(self, v2):

sum = vector()
sum.x = self.x + v2.x
Sum.y = self.y + v2.y
return sum

 Called like:
position.add_vectors(movement)
 Note that you only pass in the parameters besides self (v2 here)

A Useful vector class
 Could also do the self-mutating version
 Changes itself rather than returning a new vector object

def add_vectors(self, v2):
self.x = self.x + v2.x
self.y = self.y + v2.y
no return necessary

That constructor
 We started our class with a constructor
 A method that is called automatically whenever we create an

object of the class
 The special name __init__ tells Python to call this

automatically
def __init__(self):
 self.x = 0
 self.y = 0

 This is called the default constructor

That constructor
 Alternatively, we could have a constructor that takes

additional parameters
def __init__(self, x, y):
 self.x = x
 self.y = y

 This parameterized constructor allows us to specify the
initial values, like:
v = vector(3, 4)
 (note that you don’t pass in self, it’s already there!)

 The one we did before, with no additional parameters, is
the default constructor
v = vector()

	Back to the point class
	A Useful vector class
	A Useful vector class
	A Useful vector class
	A Useful vector class
	A Useful vector class
	A Useful vector class
	A Useful vector class
	That constructor
	That constructor

