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Linear Search 

• Given a deck of 52 playing cards, how many do you 
have to look at to find the Ace of Spades? 

 

• Best case: 1 

• Worst case: 52 

• Average case: ? 



Average Case 

• To find the average case: 

1. Enumerate all possible cases 

2. Add the number of cards looked at for all of them 

3. Divide by the number of cases 



Average Case 

1. Enumerate all possible cases 

1, 2, 3, 4 … 50, 51, 52 

 

2. Add the number of cards looked at for all of them 

1 + 2 + … + 52 = (52 + 1) * (52 / 2) = 1378 

 

3. Divide by the number of cases 

1378 / 52 = 26.5 

 



Average Case 

1. Enumerate all possible cases 

1, 2, 3, 4 … n-2, n-1, n 

 

2. Add the number of cards looked at for all of them 

1 + 2 + … + n = (n + 1) * (n / 2) = ½n(n + 1) 

 

3. Divide by the number of cases 

½n(n + 1) / n = ½(n + 1) 



Linear Search 
• Given a deck of 52 playing cards, how many do you 

have to look at to find the Ace of Spades? 

 

• Best case: 1 

• Worst case: 52 

• Average case: 26.5 

 

• The number of comparisons is a better metric than the time it 
takes, because people (computers) may be quicker or slower 
to pick up each card and look at it 
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• Now assume the deck of cards is brand new and 
sorted by suit and number 

– E.g. 2-A   , 2-A   , 2-A   , 2-A 
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Sorted Data 

• Now assume the deck of cards is brand new and 
sorted by suit and number 

– E.g. 2-A   , 2-A   , 2-A   , 2-A 

 

– Best case: 1 

– Worst case: 1 

– Average case: 1 

• Organized data allows for more predictable, more 
efficient algorithms 



Better Search Algorithms 

• Given 128 index cards with random numbers on 
them, to find a particular number (if it is there) with 
linear search: 

– Best case: 1 

– Worst case: 128 

– Average case: 64.5 

 

• If the numbers are sorted least to greatest, how 
would you search? 



Binary Search 

• To search among sorted elements: 

1. Start with the element in the middle 

2. If it matches, done 

3. Else, if it is too large, eliminate all higher elements 

4. Else, if it is too small, eliminate all lower elements 

5. Repeat from step 1 

 

• Same principle as guessing a number 



Binary Search 

• With every iteration of binary search, you cut the size 
of the search in half 

– e.g. 128, 64, 32, 16, 8, 4, 2, 1 

• 128 can be divided in half 7 times 

– In other terms, 128 = 27 

– So, the worst case number of checks for binary search is: 
• log2n + 1 

– With 2 comparisons per check (equal and less than) 
• 2(log2128 + 1) = 16 comparisons 



Why Do We Care? 

• Computational complexity 

– Studying types of problems and how hard they are to solve 

– This is a key part of computer science beyond 
programming 

• Classifying problems helps us: 

– Identify general strategies for solving problem types 

– Avoid wasting time developing programs that can’t work 



Complexity 

• Linear search scales linearly with the number of 
items you search over (n) 

– Worst case number of comparisons = n 

– Average case comparisons = ½(n + 1) 

Items Worst case Average case 

10 10 5.5 

100 100 50.5 

1000 1000 500.5 

10000 10000 5000.5 



Complexity 

• Binary search scales logarithmically with the number 
of items you search over (n) 

– Worst case number of comparisons = 2(log2n + 1) 

 

 

 

 

 

• Binary search scales much better than linear search 

 

Items Worst case linear Worst case binary 

10 10 9 

100 100 15 

1000 1000 22 

10000 10000 29 



Complexity and Big-O Notation 

• Consider the worst-case complexity of binary search: 
• 2(log2n + 1) 

– As n gets bigger and bigger, adding 1 and multiplying by 2 
become less and less significant 

– We say that binary search has a worst case complexity that 
is O(log2n) 
• Pronounced “Big-O of log2n” 

– This allows us to concentrate on a small number of 
complexity classes 



 

On a computer that executes 1 billion instructions per second: 

Common Complexity Functions 
n log2n nlog2n n2 2n 

2 1 2 4 4 

5 2 12 25 32 

10 3 33 100 1024 

25 5 116 625 33554432 

50 6 282 2500 1.13E+15 

100 7 664 10000 1.27E+30 

n n log2n nlog2n n2 2n 

10 0.01µs 0.003µs 0.033µs 0.1µs 1µs 

100 0.1µs 0.007µs 0.664µs 10µs 4x1013 years 



The Traveling Salesman 

• Consider a salesman who wants to visit a bunch of 
small towns 

– He has a list of distances between pairs of towns 

– How should he figure out what order to visit them in? 
• How long do you think it would take to figure out the best path for 

25 towns? 

 

 

 



The Traveling Salesman 

• Consider a salesman who wants to visit a bunch of 
small towns 

– He has a list of distances between pairs of towns 

– How should he figure out what order to visit them in? 

 

 

 

• The brute-force solution to this problem is O(n!), which is 
even worse than exponential 
– 25 towns = around a billion years on a 2GHz computer 

– Some more clever solutions are O(n2) 

• Reasonable solutions can only find an approximately best 
path 


