
Linear Search

• Given a deck of 52 playing cards, how many do you
have to look at to find the Ace of Spades?

Linear Search

• Given a deck of 52 playing cards, how many do you
have to look at to find the Ace of Spades?

• Best case?

• Worst case?

• Average case?

Linear Search

• Given a deck of 52 playing cards, how many do you
have to look at to find the Ace of Spades?

• Best case: 1

• Worst case: 52

• Average case: ?

Average Case

• To find the average case:

1. Enumerate all possible cases

2. Add the number of cards looked at for all of them

3. Divide by the number of cases

Average Case

1. Enumerate all possible cases

1, 2, 3, 4 … 50, 51, 52

2. Add the number of cards looked at for all of them

1 + 2 + … + 52 = (52 + 1) * (52 / 2) = 1378

3. Divide by the number of cases

1378 / 52 = 26.5

Average Case

1. Enumerate all possible cases

1, 2, 3, 4 … n-2, n-1, n

2. Add the number of cards looked at for all of them

1 + 2 + … + n = (n + 1) * (n / 2) = ½n(n + 1)

3. Divide by the number of cases

½n(n + 1) / n = ½(n + 1)

Linear Search
• Given a deck of 52 playing cards, how many do you

have to look at to find the Ace of Spades?

• Best case: 1

• Worst case: 52

• Average case: 26.5

• The number of comparisons is a better metric than the time it
takes, because people (computers) may be quicker or slower
to pick up each card and look at it

Sorted Data

• Now assume the deck of cards is brand new and
sorted by suit and number

– E.g. 2-A , 2-A , 2-A , 2-A

– Best case?

– Worst case?

– Average case?

Sorted Data

• Now assume the deck of cards is brand new and
sorted by suit and number

– E.g. 2-A , 2-A , 2-A , 2-A

– Best case: 1

– Worst case: 1

– Average case: 1

• Organized data allows for more predictable, more
efficient algorithms

Better Search Algorithms

• Given 128 index cards with random numbers on
them, to find a particular number (if it is there) with
linear search:

– Best case: 1

– Worst case: 128

– Average case: 64.5

• If the numbers are sorted least to greatest, how
would you search?

Binary Search

• To search among sorted elements:

1. Start with the element in the middle

2. If it matches, done

3. Else, if it is too large, eliminate all higher elements

4. Else, if it is too small, eliminate all lower elements

5. Repeat from step 1

• Same principle as guessing a number

Binary Search

• With every iteration of binary search, you cut the size
of the search in half

– e.g. 128, 64, 32, 16, 8, 4, 2, 1

• 128 can be divided in half 7 times

– In other terms, 128 = 27

– So, the worst case number of checks for binary search is:
• log2n + 1

– With 2 comparisons per check (equal and less than)
• 2(log2128 + 1) = 16 comparisons

Why Do We Care?

• Computational complexity

– Studying types of problems and how hard they are to solve

– This is a key part of computer science beyond
programming

• Classifying problems helps us:

– Identify general strategies for solving problem types

– Avoid wasting time developing programs that can’t work

Complexity

• Linear search scales linearly with the number of
items you search over (n)

– Worst case number of comparisons = n

– Average case comparisons = ½(n + 1)

Items Worst case Average case

10 10 5.5

100 100 50.5

1000 1000 500.5

10000 10000 5000.5

Complexity

• Binary search scales logarithmically with the number
of items you search over (n)

– Worst case number of comparisons = 2(log2n + 1)

• Binary search scales much better than linear search

Items Worst case linear Worst case binary

10 10 9

100 100 15

1000 1000 22

10000 10000 29

Complexity and Big-O Notation

• Consider the worst-case complexity of binary search:
• 2(log2n + 1)

– As n gets bigger and bigger, adding 1 and multiplying by 2
become less and less significant

– We say that binary search has a worst case complexity that
is O(log2n)
• Pronounced “Big-O of log2n”

– This allows us to concentrate on a small number of
complexity classes

On a computer that executes 1 billion instructions per second:

Common Complexity Functions
n log2n nlog2n n2 2n

2 1 2 4 4

5 2 12 25 32

10 3 33 100 1024

25 5 116 625 33554432

50 6 282 2500 1.13E+15

100 7 664 10000 1.27E+30

n n log2n nlog2n n2 2n

10 0.01µs 0.003µs 0.033µs 0.1µs 1µs

100 0.1µs 0.007µs 0.664µs 10µs 4x1013 years

The Traveling Salesman

• Consider a salesman who wants to visit a bunch of
small towns

– He has a list of distances between pairs of towns

– How should he figure out what order to visit them in?
• How long do you think it would take to figure out the best path for

25 towns?

The Traveling Salesman

• Consider a salesman who wants to visit a bunch of
small towns

– He has a list of distances between pairs of towns

– How should he figure out what order to visit them in?

• The brute-force solution to this problem is O(n!), which is
even worse than exponential
– 25 towns = around a billion years on a 2GHz computer

– Some more clever solutions are O(n2)

• Reasonable solutions can only find an approximately best
path

