
Comparing dates with a function
Date appt, today;

appt = 2010;

appt = 4;

appt = 10;

today.yr = 2010;

today.mon = 4;

today.day = 14;

if(before(appt, today))

 cout << “You missed it!” << endl;

• Function compares two objects: appt and today

– The function takes appt and today as parameters

– The function will return true if appt is before today

Comparing dates with a function

• Function definition
– Takes 2 dates, a and b

– Returns true if a is before b

bool before(Date a, Date b)

{

 if((a.yr < b.yr) ||

 (a.yr == b.yr && a.mon < b.mon) ||

 (a.yr == b.yr && a.mon == b.mon && a.day < b.day))

 return true;

 else

 return false;

}

Comparing dates with a method
Date appt, today;

appt = 2010;

appt = 4;

appt = 10;

today.yr = 2010;

today.mon = 4;

today.day = 14;

if(appt.Before(today))

 cout << “You missed it!” << endl;

• Method compares two objects: appt and today

– The method is called on appt

– The method takes today as a parameter

– The method will return true if appt is before today

Comparing dates with a method

• Declare the method in the Date class

– This method takes a single argument of type Date

class Date

{

public:

int day, mon, yr;

void Print();

bool Before(Date other);

};

Comparing dates with a method
class Date

{

public:

int day, mon, yr;

void Print();

bool Before(Date other);

};

• Method definition
bool Date::Before(Date other)

{

 if((yr < other.yr) ||

 (yr == other.yr && mon < other.mon) ||

 (yr == other.yr && mon == other.mon && day < other.day))

 return true;

 else

 return false;

}

Comparing dates with a method

• Comparing the object called on with the object
passed in
– yr is in the object called on

– other.yr is in the object passed in

bool Date::Before(Date other)

{

 if((yr < other.yr) ||

 (yr == other.yr && mon < other.mon) ||

 (yr == other.yr && mon == other.mon && day < other.day))

 return true;

 else

 return false;

}

Exercise
1. Define a Rectangle class with:

– Private data members height and width (doubles)

– A public method SetSize that takes values for height and
width

– A public method Area that returns the area (double)

2. Define the SetSize and Area methods

3. Use the Rectangle class to:

– Declare a Rectangle object

– Call SetSize to set the size of the Rectangle to width 10 and
height 3

– Print the area of the Rectangle

– Call SetSize to change the size of the Rectangle to width 15
and height 7

– Print the area of the Rectangle again

