
Object-Oriented Programming

• In C++ classes provide the functionality necessary to
use object-oriented programming

– OOP is a particular way of organizing computer programs

– It doesn’t allow you to do anything you couldn’t already
do, but it makes it arguably more efficient

– OOP is by far the dominant software engineering practice
in the last two decades

• Classes combine data and functionality

– Class members can store structured data, as we’ve seen

– Class members can also be functions
• Class-specific functions are called methods

The string class

• The string class has private data members to store
the characters that make up a string

– It probably uses an array, although it doesn’t have to

– It probably has ints to keep track of the size of the array
and the number of characters

• The string class has public methods to do stuff

– Return the number of characters in the internal storage
int len();

– Append the characters in s to the internal storage
void append(string s);

– returns the position of s within the internal storage
int find(string s);

Date class

• What data should the Date class store?

Date class

• What data should the Date class store?
class Date

{

public:

int day, mon, yr;

};

• What functionality would we like Dates to have?

Printing a date

• We’d like to have a print method so we could do:
Date my_birthday;

my_birthday.yr = 1975;

my_birthday.mon = 5;

my_birthday.day = 15;

my_birthday.Print();

– And have it print out “5/15/1975” or “May 15, 1975”

• Notice that the Print() method is called on the object
my_birthday

– We want it to print the values stored in that object

Printing a date

• To do this, we declare a method in the Date class

– A method is a class member that is a function
class Date

{

public:

int day, mon, yr;

void Print();

};

– Data members look like variable declarations

– Method declarations look like function prototypes

– Like a prototype, a method declaration tells the compiler
to expect us to define a function later

Printing a date
• Defining a method looks just like defining a function
class Date

{

public:

int day, mon, yr;

void Print();

};

void Date::Print()

{

 cout << mon << “/” << day << “/” << yr;

}

– The name of the method must be fully qualified
• <class name>::<name> (e.g. Date::Print)

• :: is the scope resolution operator

• In the class definition the class scope is implied, so you can omit it

Variable scope
• In a function, you can use variables that are:

– Locally declared

– Declared as a parameter

void print(int mon, int day, int yr)

{

 char sep = ‘/’;

 cout << mon << sep << day << sep << yr;

}

– These variables are in scope

– When the function ends, local vars and params are
discarded

Variable scope
• In a method, you can use variables that are:

– Locally declared

– Declared as a parameter

– Or declared as a class member!
void Date::Print()

{

 cout << mon << “/” << day << “/” << yr;

}

• Class variables reference memory in the object that
the method is called on

– The method runs in the scope of the object

– These variables are not discarded when the method ends!

Class Initialization

• When we create a Date object
 Date my_birthday;

– The member fields are full of garbage

– It might be nice to have them initialize to zero

• Can’t initialize in the class definition
class Date

{

public:

int day = 0, mon = 0, yr = 0;

};

– Since the definition is a blueprint, there’s nowhere to store
those numbers yet

– We have to initialize them after the memory is allocated

Class Constructors
• Classes let us do this, by defining a constructor

method

– Added like any other method except:
• No return value (not even void)

• Named after the class
class Date

{

public:

int day, mon, yr;

 Date();

};

Date::Date()

{

 day = 0;

 mon = 0;

 yr = 0;

}

Class Constructors
• When an object is declared

e.g. Date d;

1. Memory is allocated

2. The constructor is called

Constructors With Parameters
• But what if we want to set initial values to something

better than just a bunch of 0s?

– Without parameters to the constructor, we can only set
default values (i.e. 0)

– So we can define additional constructors that take values
class Date

{

public:

int day, mon, yr;

 Date(int init_day, int init_mon, int init_yr);

};

Date::Date(int init_day, int init_mon, int init_yr)

{

 day = init_day;

 mon = init_mon;

 yr = init_yr;

}

Constructors With Parameters
• Now we have options when we declare new Date

objects:

Date some_day; // inits all to 0

Date today(4, 14, 2010); // inits to those numbers

Exercise
1. Define a BankAccount class with:

– Private data members account_number and balance

– A constructor that takes initial values for both members

– A public Print method that shows the account number and
balance

2. Define the constructor and the Print method

3. Use the BankAccount class to:

– Declare a BankAccount object for account 98392 with a
starting balance of $5.32

– Print the BankAccount information

