
Structured data

• Parallel arrays aren’t a natural fit for heterogeneous
rows of data

– One set of names, one set of positions, one set of scores

• What we have is structured data

– Name, position, score for each employee

– One set of employees

• For a single employee we could do:
string name;

string position;

int review_score;

– Allocates memory space for 2 strings and 1 int
• Names each location

Using classes
• C++ provides classes to group structured data

together
 class employee

 {

 public:

 string name;

 string position;

 int review_score;

 };

• This is a class definition

– Give the class a name

– Tell the compiler what the parts of the class are
• Each part has a type and a name (looks just like a variable)

• The parts of a class are called members

Using classes

• Defining the class creates a blueprint

– No memory is allocated yet

– The class is used as a data type in a variable declaration:
• Variable declaration is always:

type name;

• So in this example:

employee emp;

• This variable declaration:

– Allocates memory space for an instance of the class
• 2 strings, 1 int

– Names that memory space

– A class instance is also called an object

Using class objects

• With arrays, you always have to indicate which
element in the array you want to use

– Using the array subscript operator []

– E.g. this_array[15]

• With class objects, you have to indicate which part of
the class you want to use

– The member access operator (.) indicates part of an object

– The parts are used like any other variable:

 emp.name = “peter”;

 cin >> emp.position;

 emp.review_score = emp.review_score + 1;

Arrays of objects

• Now that we’ve defined a class for employee

– We can have a set of employees using an array
employee emps[10];

– Allocates space for 10 employee objects
• Each one has 2 strings and 1 int

• Combine array and class access operators

– The 5th employee’s name:
• emps[5].name

– the first employee’s review score:
• emps[0].review_score

Exercise: arrays of objects

• Define a class to hold a point (x, y)

– Like you would use to specify points on the screen

• Write a statement to declare an array of 100 points

• Write statements to set the first point to (1, 4)

– That is, x is 1, y is 4

• Write statements to set the second point to (5, 3)

• Assuming there is an integer n, and there are n valid
points in your array:

– Write statements to print the values of all n points to the
screen

Example: lookup a record

• Given the arrays of employee objects and the
following code:

string lookup_name;

cout << "Enter a name to look up: ";

cin >> lookup_name;

• Write a function to return the requested employee

• Write a function to print an employee object

– E.g. “samir (developer) received a review of 75”

Exercise: lookup the highest score

• Given the array of employee objects

• Write a function to return the employee object with
the highest review score

