
Working With Arrays of Data

• Consider a program that:

– Gets 5 numbers from the user

– Outputs the average

• What variables are needed?

• What are the steps the program should take?

Working With Arrays of Data

• Consider a program that:

– Gets 5 numbers from the user

– Outputs the average

• What variables are needed?

• What are the steps the program should take?

• But what if it takes 100 numbers instead of 5? 1000?

Working With Arrays of Data

• Using arrays, we can:

– Allocate all 5 integers at once

– Give them a single name

– Access them by index

Naming Arrays of Data

• When you declare a variable the computer:

– Allocates space for it

– Gives it a name

• The space allocation is based on the type of the
variable

– Main memory is one long sequence of bytes

– An integer (int) takes 4 bytes on most systems

• So why not allocate multiple ints and give them one
name?

– Requires a new syntax for allocation

– Requires a way to specify which int you want to work with

C++ Programming: Program Design

Including Data Structures, Fourth

Edition

5

Arrays

• Array: a collection of a fixed number of components
wherein all of the components have the same data
type

• In a one-dimensional array, the components are
arranged in a list form

• Syntax for declaring a one-dimensional array:

 intExp evaluates to a positive integer

C++ Programming: Program Design

Including Data Structures, Fourth

Edition

6

Arrays (continued)

• Example:

 int num[5];

C++ Programming: Program Design

Including Data Structures, Fourth

Edition

7

Accessing Array Components

• General syntax:

 where indexExp, called an index, is any expression whose
value is a nonnegative integer

• Index value specifies the position of the component
in the array

• [] is the array subscripting operator

• The array index always starts at 0

C++ Programming: Program Design

Including Data Structures, Fourth

Edition

8

Accessing Array Components
(continued)

C++ Programming: Program Design

Including Data Structures, Fourth

Edition

9

Accessing Array Components
(continued)

C++ Programming: Program Design

Including Data Structures, Fourth

Edition

10

Accessing Array Components
(continued)

C++ Programming: Program Design

Including Data Structures, Fourth

Edition

11

Accessing Array Components
(continued)

Working With Arrays of Data

• Using arrays, we can:

– Allocate all 5 integers at once

– Give them a single name

– Access them by index

• Using arrays together with for loops, we can:

– Allocate any number of integers

– Give them a single name

– Access them by index

– Repeat instructions over any number of integers
• Usually by using a for loop counter

Processing arrays
• For loop is almost always the answer

– How do you print an array?

– How do you search an array?

– How do you copy an array?

– Etc…

• The for loop counter is used as the array index

– To access each element in the array sequentially
for(int i=0; i<length; i++)

{

cout << some_array[i] << endl;

}

• Notice that you have to know the length of the array!

Size, length, count, etc.
• Every array has 2 critical numbers associated with it

– Maximum Size: how many elements can it store?
• Also called size some times

– Actual Count: how many valid pieces of data are in it
• Also called length, size, count, etc.

• (not technical terms)

• Every array element always has a value

– You can’t really delete anything from an array, only
overwrite things

• Data is always stored in contiguous elements!

– Starting from element 0, no empty spaces

– The last valid element is always at index length-1

Summary

• Array variables allow you to allocate and name a
sequence of values

– The elements are accessed by index

– Data is stored from element 0 to element length-1

– This works really well with for loops
• If the question involves an array, the answer is usually a for loop!

• Computers are really good at counting and repetitive
tasks

– Arrays allow you, the programmer, to specify things once
and allow the computer to do it ten times, a hundred
times, a million times…

Exercises

• Declare an array of 150 doubles

– Declare a constant SIZE and use it in the array declaration

• Syntax checks!

– (you rarely access individual array elements like this)

– Set the 10th element in the array of doubles to 5.6

– Print the 10th element
• e.g. “The 10th element is 5.6”

– Set the 72nd element to the value of the 12th element

– Ask the user to enter a value and store it in the 113th
element

– Set the 43rd – 46th elements to the values 7, 8, 9, 10
• Use a for loop!

Exercises

• Store 100 copies of the number 50 in your array

– Declare an integer length, set it to 100

– Set the first length elements to 50

• Print all the valid elements in the array

– Your answer should use length

• Store the numbers 1 through 100 in your array

– e.g. first element is 1, second element is 2, etc.

• Using a for loop, set the first 10 elements in the array
to the value of the last 10 valid elements (in reverse)

– e.g. first element ends up with 100, second with 99, etc.

