* Consider a program that:
— Gets 5 numbers from the user
— QOutputs the average

* What variables are needed?
 What are the steps the program should take?

Consider a program that:
— Gets 5 numbers from the user
— QOutputs the average

What variables are needed?
What are the steps the program should take?

But what if it takes 100 numbers instead of 5? 10007

Working With Arrays of Data

* Using arrays, we can:
— Allocate all 5 integers at once
— Give them a single name
— Access them by index

When you declare a variable the computer:

— Allocates space for it
— Gives it a name

The space allocation is based on the type of the
variable

— Main memory is one long sequence of bytes

— An integer (int) takes 4 bytes on most systems

So why not allocate multiple ints and give them one
name?

— Requires a new syntax for allocation
— Requires a way to specify which int you want to work with

e Array: a collection of a fixed number of components
wherein all of the components have the same data

type
* |In a one-dimensional array, the components are
arranged in a list form

* Syntax for declaring a one-dimensional array:

dataType arrayName[intExp];

intExp evaluates to a positive integer

Arrays (continued)

 Example:

int num|[5];

FIGURE 9-1

num([0]
num[1]
num([2]
num[3]

numf4]

Array num

C++ Programming: Program Design
Including Data Structures, Fourth
Edition

General syntax:

arrayName[1ndexExp]
where indexExp, called an index, is any expression whose
value is a nonnegative integer

Index value specifies the position of the component
in the array

[] is the array subscripting operator
The array index always starts at O

Accessing Array Components
(continued)

int 1list[10];

list[0]

—
e

list

(]
—

list

list

[+%]
[-

list

L= I
[P S

list

=]
[—)

(] (%]
— —
e e e e e e e e e D
=
[

L=]
—_

list

list[9]

FIGURE 9-2 Array 1list
C++ Programming: Program Design
Including Data Structures, Fourth
Edition

Accessing Array Components
(continued)

list[5] = 34;

FIGURE 9-3 Array 1ist after execution of the statement 1ist[5]= 34;
C++ Programming: Program besign
Including Data Structures, Fourth
Edition

Accessing Array Components
(continued)

list[3] = 10;

list[6] = 35;

1list[5] = 1list[3] + list[6];
list[0]
list[1]
list[2]
list[3]
list[4]
list[5]
list[6]
list[7]
list[B]
list[9]

FIGURE 9-4 Array 1ist after execution of the statements 1ist[3]= 10;, 1list[6]= 35;, and
list[5] = 1ist[3] + list[6];
Including Data Structures, Fourth
Edition

Accessing Array Components
(continued)

You can also declare arrays as follows:

const int ARRAY STZE = 10;
int 1ist[ARRAY SIZE];

That is, you can first declare a named constant and then use the value of the named
constant to declare an array and specify its size.

NOTE When you declare an array, its size must be known. For example, you cannot do the

following:

int arraySize; //Line 1

cout << "Enter the size of the array: "; //Line 2

cin >> arraySize; //Line 3

cout << endl; //Line 4

int list[arraySize]; //Line 5; not allowed

C++ Programming: Program Design
Including Data Structures, Fourth 11
Edition

* Using arrays, we can:
— Allocate all 5 integers at once
— Give them a single name
— Access them by index

e Using arrays together with for loops, we can:
— Allocate any number of integers
— Give them a single name
— Access them by index

— Repeat instructions over any number of integers
e Usually by using a for loop counter

* For loop is almost always the answer
— How do you print an array?
— How do you search an array?
— How do you copy an array?
— Etc...

* The for loop counter is used as the array index
— To access each element in the array sequentially
for(int 1=0; i<length; i++)

{

cout << some arrayl[i] << endl;

)
* Notice that you have to know the length of the array!

* Every array has 2 critical numbers associated with it

— Maximum Size: how many elements can it store?

* Also called size some times

— Actual Count: how many valid pieces of data are in it
* Also called length, size, count, etc.
* (not technical terms)

* Every array element always has a value

— You can’t really delete anything from an array, only
overwrite things

e Data is always stored in contiguous elements!
— Starting from element 0, no empty spaces
— The last valid element is always at index length-1

* Array variables allow you to allocate and name a
sequence of values
— The elements are accessed by index
— Data is stored from element 0 to element length-1
— This works really well with for loops

 If the question involves an array, the answer is usually a for loop!

 Computers are really good at counting and repetitive
tasks
— Arrays allow you, the programmer, to specify things once

and allow the computer to do it ten times, a hundred
times, a million times...

e Declare an array of 150 doubles
— Declare a constant SIZE and use it in the array declaration

* Syntax checks!
— (you rarely access individual array elements like this)
— Set the 10t element in the array of doubles to 5.6

— Print the 10t" element
e e.g. “The 10t element is 5.6”

— Set the 72" element to the value of the 12th element

— Ask the user to enter a value and store it in the 113th
element

— Set the 43 — 46t elements to the values 7, 8, 9, 10

e Use a for loop!

Store 100 copies of the number 50 in your array
— Declare an integer length, set it to 100
— Set the first length elements to 50

Print all the valid elements in the array
— Your answer should use length

Store the numbers 1 through 100 in your array
— e.g. first elementis 1, second element is 2, etc.

Using a for loop, set the first 10 elements in the array
to the value of the last 10 valid elements (in reverse)

— e.g. first element ends up with 100, second with 99, etc.

