* The extraction operator (>>) is one way to read
characters from an input stream like cin

— It provides a powerful way to get individual pieces of data
(integers, reals, chars, strings) separated by spaces

— However, user input doesn’t always look like that

e The 1ostream library defines other ways to do
input
— The function get 1inel)

— The function cin.ignorel)

* Operator syntax

operandl operator operandZ

— Operator is a special symbol
— All operators are binary (two operands)
— An operator performs some task and evaluates to a value

* Sometimes you care about the value (e.g. addition)
5 + 2
e Sometimes you care about the side-effect (e.g. printing)

cout << “Hello”

* Function syntax

function(parameter?, parameter’Z ..)
— Function name is an identifier
— Any number of parameters allowed (including none)

— Also performs some task (set of instructions) and evaluates to a value
add(5, 2)

insertion(cout, “Hello”)

Some Example Functions

* These functions are in the cmath library
— #include <cmath> to usethem

 To compute the square root of a number:
— 1 input (float), 1 output (float)

answer = sqrt(16.0);

* To compute the power function (xY)
— 2 inputs (float, int), 1 output (float)

cout << pow(2.0, 3);

Because the extraction operator reads data separated by

whitespace, it cannot read a string with whitespace in it
— Given the code:

string s;

cin >> s;

— If the user types “University of Texas”

* Because the extraction operator reads data separated by
whitespace, it cannot read a string with whitespace in it
— Given the code:
string s;
cin >> s;
— If the user types “University of Texas”
— s will contain the string “University”

* To read strings with spaces in them, we use the
function getline ()

— Takes two arguments (just like extraction):
* The input stream to read from

* The (string) variable to store in

getline(1streamVar, strVar);

— Reads all characters until the end of the line

» Stores the resulting string in the string variable

— Evaluates to the stream that was read from

* To support chaining, but the task (reading) is the main point

e getline () can also take three arguments

— The input stream to read from
— The (string) variable to store in
— A delimiting character

getline(istreamVar, strVar, delim);
* This version reads until it reaches the specified
delimiting character

— If the delimiter is ‘\n’, it reads to the end of the line

getline(istreamVar, strVar, ‘\n’);

* The function cin.ignore

— The “” is class syntax, which we’ll discuss later in the
course

e Just memorize for now

— Takes two arguments:
 The number of characters to ignore
* A delimiting character

— Reads and discards the specified number of characters

 Unless it reaches the delimiter first

— Evaluates to the stream that was read from

* To support chaining, but the task (reading) is the main point

Things can go wrong during execution

If input data does not match corresponding
variables, program may run into problems

Trying to read a letter into an int or double
variable will result in an input failure

If an error occurs when reading data

— Input stream enters the fail state

* Once in a fail state, all further /0 statements using
that stream are ignored

 The program continues to execute with whatever
values are stored in variables
— This causes incorrect results

* The clear function restores input stream to a
working state

cin.clear () ;

— However, it does not remove the characters that caused
the error from the input stream

Exercise

int x, v

string line;

For the input:
13 28 D
14 E 98

A B 56

What are the values of %, y and 11ine after:
f. getline(cin, line, ‘8’);
cin.ignore(50, *\n’);

cin >> x;
cin.ignore(50, ‘E’);

cin >> vy;

