
Additional Input Functions

• The extraction operator (>>) is one way to read
characters from an input stream like cin

– It provides a powerful way to get individual pieces of data
(integers, reals, chars, strings) separated by spaces

– However, user input doesn’t always look like that

• The iostream library defines other ways to do
input
– The function getline()

– The function cin.ignore()

Functions and Operators
• Operator syntax

 operand1 operator operand2

– Operator is a special symbol

– All operators are binary (two operands)

– An operator performs some task and evaluates to a value
• Sometimes you care about the value (e.g. addition)

 5 + 2

• Sometimes you care about the side-effect (e.g. printing)

 cout << “Hello”

• Function syntax
 function(parameter2, parameter2 …)

– Function name is an identifier

– Any number of parameters allowed (including none)

– Also performs some task (set of instructions) and evaluates to a value

 add(5, 2)

 insertion(cout, “Hello”)

Some Example Functions
• These functions are in the cmath library

– #include <cmath> to use them

• To compute the square root of a number:
– 1 input (float), 1 output (float)

 answer = sqrt(16.0);

• To compute the power function (xy)
– 2 inputs (float, int), 1 output (float)

 cout << pow(2.0, 3);

Back to Input

• Because the extraction operator reads data separated by
whitespace, it cannot read a string with whitespace in it
– Given the code:

string s;

cin >> s;

– If the user types “University of Texas”

Back to Input

• Because the extraction operator reads data separated by
whitespace, it cannot read a string with whitespace in it
– Given the code:

string s;

cin >> s;

– If the user types “University of Texas”

– s will contain the string “University”

getline Function

• To read strings with spaces in them, we use the
function getline()

– Takes two arguments (just like extraction):
• The input stream to read from

• The (string) variable to store in

getline(istreamVar, strVar);

– Reads all characters until the end of the line
• Stores the resulting string in the string variable

– Evaluates to the stream that was read from
• To support chaining, but the task (reading) is the main point

getline Function

• getline() can also take three arguments

– The input stream to read from

– The (string) variable to store in

– A delimiting character

getline(istreamVar, strVar, delim);

• This version reads until it reaches the specified
delimiting character

– If the delimiter is ‘\n’, it reads to the end of the line

 getline(istreamVar, strVar, ‘\n’);

cin.ignore Function

• The function cin.ignore

– The “.” is class syntax, which we’ll discuss later in the
course
• Just memorize for now

– Takes two arguments:
• The number of characters to ignore

• A delimiting character

– Reads and discards the specified number of characters
• Unless it reaches the delimiter first

– Evaluates to the stream that was read from
• To support chaining, but the task (reading) is the main point

Input Failure

• Things can go wrong during execution

• If input data does not match corresponding
variables, program may run into problems

• Trying to read a letter into an int or double
variable will result in an input failure

• If an error occurs when reading data

– Input stream enters the fail state

The clear Function

• Once in a fail state, all further I/O statements using
that stream are ignored

• The program continues to execute with whatever
values are stored in variables

– This causes incorrect results

• The clear function restores input stream to a
working state
 cin.clear();

– However, it does not remove the characters that caused
the error from the input stream

Exercise
int x, y;

string line;

For the input:

13 28 D

14 E 98

A B 56

What are the values of x, y and line after:

f. getline(cin, line, ‘8’);

 cin.ignore(50, ‘\n’);

 cin >> x;

 cin.ignore(50, ‘E’);

 cin >> y;

