Program Input and Output

* Avery common pattern for programs to follow:
— Get input from some source
— Process that input
— Show the results



* Looks very similar to a print statement

cin >> x;

cin >> myVariable;

e Extraction operator (>>) tells the computer to read
from a input stream and store in a variable

— LHS argument is the input stream to read from
* cin gets characters typed into that black box on the screen

— RHS argument is the variable to store in



The extraction operator (>>) is a built-in operator

— It retrieves characters from an input stream and stores
their value in a variable

— Like insertion, this requires using the iostreamlibrary

The iostream library defines the type istream (input
stream)

— Input streams move characters from an output device (the
keyboard, a file, etc.) to the program

The iostream library also declares the variable cin
— cinisoftype istream (i.e.istream cin;)

— cin reads characters typed into the black box on the
screen



A stream handles characters in sequential order
— E.g. Characters output to the screen in order

A program gets characters from an input stream
— In the order they are typed by the user
— The program can only get one character at a time
* It can get remove it from the stream or not
The cin iostream only sends characters when the
user presses the return key

Working at the level of individual characters is
tedious and error-prone

— The extraction operator (<<) provides a higher level of
abstraction for you to work with



Chaining Insertion/Extraction

* You can chain together insertion/extraction
expressions in the same statement
cout << x;
cout << 067;
cout << endl;
— Does the same thing as:
cout << x << 07 << endl;



Chaining Insertion/Extraction

* This is possible because:
— Every expression evaluates to a value

— The insertion and extraction operators evaluate to the
value of their LHS argument (the stream)

* For example:
cout << x << 067 << endl;
K | < Prints x

|
cout << 67 << endl;

\ y J < Prints 67

cout << endl;
\ | «—— Prints a newline

|

cout;




Chaining Insertion/Extraction

e Extraction is chained in the same way
cin >> Xx;
cin >> vy;
— Is the same as
cin >> x >> y;

e Common mistake:
cin >> x >> endl;

— Attempts to read characters into the variable end1, which
is not a variable

— Results in an error



e User input is more complicated than output
— You expect certain data...
— ...but have to deal with it if they type something else
— (You don’t control what the user types)

* So what algorithm (set of steps) does the extraction
operator use to turn individual characters into a
proper value for the given variable?



* Figuring it out
— You know 2 things going in about stream input:

It works with characters
* It can only look at one character at a time

— Try examples, see what ends up in the variable
e Can use the debugger inspector to examine variables
 How does it decide when to take a character, when to stop?
* How does it combine the characters into a single value?

— Test your conclusions with another example



Extraction Rules

Can you predict what that value will be, given certain input?
(note the spaces in the input!)

int x;

cin >> X;

The user types... Left on the stream is...

34 34 \n (newline character)
78 94 42 ? ?
901abh29ks ? ?
-15.4 ? ?
9a9a9 ? ?

jk ? ?



Extraction Rules

(note the spaces in the input!)

double x;

cin >> X;

The user types... Left on the stream is...

78.5694.2 42.09 ? ?
-901abh29ks ? ?
67.84.29.19 ? ?

jk ? ?



Extraction Rules

(note the spaces in the input!)

char x;

cin >> X;

The user types... Left on the stream is...

7894 42 ? ?
901abh29ks ? ?
901abh29ks ? ?

jk ? ?



Extraction Rules

(note the spaces in the input!)
string Xx;

cin >> X;

The user types... Left on the stream is...

7894 42 ? ?
901.23ab%!@h29ks ? ?
The rain in Spain ? ?

jk ? ?



Extraction Rules

int x, vy,

char ch;

For the input:
5 28 36

What are the values of %, v and ch after:
a. cin >> x >> y >> ch;
b. cin >> x >> ch >> vy;



Extraction Rules

int x, vy,
double z;

For the input:
37 86.56 32

What are the values of %, v and z after:
C. Cln >> xXx >> vy >> z;
d. cin >> z >> X >> y;



