
User-defined functions

• A predefined function is just a function someone else
wrote and compiled into a library

• A program can have multiple functions
– main is required

– Other functions can be defined the same way, then used
just like predefined functions

Parts of a function definition

int main()

{

// your program here

}

Function heading int main()

Name of the function main

List of parameters, with types ()

Return type of the function int

Function body {

// your program here

}

Writing cube(x)

double cube(double x)

{

// your program here

}

Function heading double cube(double x)

Name of the function cube

List of parameters, with types (double x)

Return type of the function double

Function body {

// your program here

}

Writing cube(x)

double cube(double x)

{

double c;

c = x * x * x;

return c;

}

return statement

return 0;

• When a return statement executes

– Function immediately terminates

– The specified value is returned

• When a return statement executes in the
function main, the program terminates

Alternative cube(x)

double cube(double x)

{

double c = x * x * x;

return c;

}

double cube(double x)

{

return x * x * x;

}

Call and definition

• There are two distinct viewpoints on every function

– The function call (outside)
• Call by name

• Provide (pass in) input parameters or arguments

• Get back the return value and do something with it

– The function definition (inside)
• Receive the parameters

• Do something with them (and also local variables)

• Return (pass out) a value

Parameters
• Formal parameters

– Used inside the function

– Declared like variables (type and name) in the function
heading

– E.g. x in double cube(double x)

• Actual parameters

– Passed from outside in the function call

– Must match the number and types of the formal
parameters

– E.g. 5 in cube(5);

• Each actual parameter provides a value for a formal
parameter
– x gets the value 5

A sum function
• Write a function definition to take the sum of three

real numbers
– Name: sum_three

– Formal parameters: 3 real numbers (x, y, z)

– Return value: 1 real number (the sum)

• To add 5, 6 and 7 and store in a variable sum:

sum = sum_three(5, 6, 7);

Formal Parameter in Definition Actual Parameter in Call

x 5

y 6

z 7

A sum function
• The function definition (header + body):

double sum_three(double x, double y, double z)

{

double sum;

sum = x + y + z;

return sum;

}

• The function call (to add 5, 6 and 7 and store in a
variable sum) :
sum = sum_three(5, 6, 7);

Exercise: An average function

• Write a function definition to take the average of three
numbers

– Name: average_three

– Parameters: 3 real numbers

– Return value: 1 real number (the average)

1. Write the heading
– Name, parameter list, return type

2. Write the body
– Declare any local variables necessary

– Do something with the parameters

– Return a value

Functions, variables and memory

• Each function has its own memory space
– Including main

– All variables and parameters declared in a function refer to
memory allocated in that space

– When a function ends, its variables are deallocated

double sum_three(double x, double y, double z)

{

double sum;

sum = x + y + z;

return sum;

}

…

sum = sum_three(5, 6, 7);

Sum

x

y

z

sum = sum_three(5, 6, 7);

1. Allocate memory for formal parameters

2. Assign actual parameter values

3. Allocate memory for declared variable sum

4. Calculate the sum

5. Return the sum (all memory de-allocated)

1. 2. 3. 4.
Sum

5x

6y

7z

Sum

5x

6y

7z

7sum

Sum

5x

6y

7z

sum

Functions, variables and memory

Functions, variables and memory

• Local variables and parameters inside a function are
specific to that function!

– They don’t exist outside, which is why values must be
passed in and returned

– Functions cannot use variables declared in another
function (even main)
• We say that they are out of scope

• Variables with the same name in different functions
do not refer to the same memory

The void return type

• A function does not have to return a value
– The special type void indicates that a function does not

return anything

– A void function cannot be called as if it returned a value

• Given a function with the heading:
void thisFunction(int x)

– This function call would cause an error:

y = thisFunction(x);

– Putting a return statement in the function body would also
cause an error

Using Functions

• Functions are like building blocks

• They allow complicated programs to be divided into
manageable pieces

• Some advantages of functions:
– Can be re-used (even in different programs)

– A programmer can focus on just that part of the program
and construct it, debug it, and perfect it

– Different people can work on different functions
simultaneously

– Enhance program readability

