Function parameters and return values

- A function is a set of instructions
- When executed, it accomplishes a task
- Most functions require input parameters
- Pieces of data that the function needs to do its job
- This is not the same as stream input from the user
- Many functions output a return value
- A piece of data that is the result of that job
- This is not the same as stream input to the screen

Functions vs. operators

- Both instruct the computer to perform an operation
- Operator syntax
operandl operator operand2
- Operator is a special symbol
- All operators are binary (two operands)

5 + 2
cout << "Hello"

- Evaluates to (returns) a single value
- Function syntax

```
function( parameter2, parameter2 ... )
```

- Function name is an identifier
- Any number of parameters allowed (including none)
operator+(5, 2)
operator<<(cout, "Hello")
- Evaluates to (returns) either a single value or no value

Example functions

- pow (X, y) calculates X^{Y}
$-\operatorname{pow}(2.0,3.0)$ is 8.0
- Input: two parameters x and y of type double
- Output: returns a value of type double
- $\operatorname{sqrt}(x)$ calculates the nonnegative square root of x, for
$x>=0.0$
- sqre(2.25) is 1.5
- Input: one parameter x of type double
- Output: returns a value of type double

Example functions

- floor (x) calculates the largest whole number less than X
- floor (48.79) is 48.0
- Input: one parameter x of type double
- Output: returns a value of type double

Predefined functions

- Functions someone else wrote that you can use
- Predefined functions are organized into separate libraries
- Stream I/O functions are in iostream library
- Math functions are in cmath library
- Each library has a header file
- To use a predefined function, you \# include the appropriate header file

Calling Functions

- Every function has 3 parts you need to know in order to use it (besides what it does, of course):
- A name
- Follows the same rules as variables names
- Can't be the same as the name of a variable or a reserved word
- A parameter list
- These are the input values that the function needs in order to do its job
- Each parameter is a specific data type (int, double, char, string, etc)
- A return type
- This is the data type that the function returns when it is done

Calling Functions

- Functions are called by name:

$$
y=\operatorname{sqrt}(x) ;
$$

- When you call a function, you have to provide it with appropriate parameter values
- Same number it expects to get
- Same order
- Same types
- We say these values are passed in to the function

Using the Return Value

- The functions we've looked at all return a value
- Sometimes we call this the output of the function
- This is different than output to the screen!
- Return values aren't printed to the screen, they are returned to the calling statement
- You could also say the function evaluates to its return value
- Some examples:

$$
\begin{aligned}
\mathrm{x} & =3+4 ; \\
\text { evaluates to: } \mathrm{x} & =7 ; \\
\mathrm{y} & =\operatorname{sqrt}(16.0) ; \\
\text { evaluates to: } \mathrm{y} & =4 ;
\end{aligned}
$$

Function Calls and Return Values

- When calling a function, you typically:
- Save the return value for further calculation
- Use the return value in some calculation
- Print the return value
- In other words, functions are called:
- In an assignment statement
- In an expression
- As an actual parameter to another function

Example Predefined Functions

table 6-1 Predefined Functions

Function	Header File	Purpose	Parameter(s) Type	Result
abs (x)	<cstdlib>	Returns the absolute value of its argument: abs $(-7)=7$	int	int
ceil (x)	<cmath>	Returns the smallest whole number that is not less than $\mathrm{x}:$ ceil $(56.34)=57.0$	double	double
$\cos (\mathrm{x})$	<cmath>	Returns the cosine of angle $x: \cos (0.0)=1.0$	double (radians)	double
$\exp (\mathrm{x})$	<cmath>	$\begin{aligned} & \text { Returns } e^{x} \text {, where } e=2.718: \\ & \exp (1.0)=2.71828 \end{aligned}$	double	double
fabs (x)	<cmath>	Returns the absolute value of its argument: $\text { fabs }(-5.67)=5.67$	double	double

Example Predefined Functions

TABLE 6-1 Predefined Functions (continued)

Function	Header File	Purpose	Parameter(s) Type	Result
floor (x)	<cmath>	Returns the largest whole number that is not greater than $\mathrm{x}:$:floor $(45.67)=45.00$	double	double
pow (x, y)	<cmath>	Returns x^{y}; If x is negative, y must be whole number: pow (0.16, 0.5) $=0.4$	double	double
tolower (x)	<cctype>	Returns the lowercase value of x if x is uppercase; otherwise, returns x	int	int
toupper (x)	<cctype>	Returns the uppercase value of x if x is lowercase; otherwise, returns x	int	int

Exercises

1. Given three integer variables, a, b and c, write a C++ statement to find the greatest common denominator of a and b , and store it in C

- How? Using a function!
- The name of the function to compute the greatest common denominator is gcd
- This function takes two integers as parameters
- It returns a single integer

2. Given two string variables, s1 and s2, write a C++ statement to assign s2 the characters in s1 in reverse order

- How? Using a function!
- The name of the function to reverse a string is sreverse
- This function takes a string as its parameter
- It returns a string

Exercises

3. Given three integer variables, num1, num2 and num3, write a C++ statement to print the largest one

- How? Using a function!
- The name of the function to find the largest of three integers is
largest
- This function takes three integers as parameters
- It returns a single integer

4. Given three integer variables, num1, num2 and num3, write a C++ statement to print the largest one

- This time using a different function
- The name of the function to find the larger of two integers is larger
- This function takes two integers as parameters
- It returns a single integer

Side-effects

- Besides returning a value, functions can also have side-effects
- For now, we'll focus on I/O related side-effects
- Examples:
- Reading user input from a stream
- Printing output to a stream
- Drawing on the screen

