Alternative counter loop
— Could be done with a while loop

i = 0;
while(1 < 5)
{

cout << 1 << ™ 7,
i++;
}
— Provides a distinct, clear way to do counter loops

for(i =0 ; 1 <5 ; 1 ++)
{

cout << 1 <<« ™ 7,

}

for(1 =0 ; 1 < 5 ; 1++)
{
cout << 1 << ™ 7,

}
* Initialization
i =0
— Sets the initial value of the counter variable
* Condition
i <5
— Specifies the condition for continuing to loop
 Update
i++

— Updates the counter variable

for Loop

initial
statement

loop update
condition true w statement

I
false

.

FIGURE 5-2 for loop

C++ Programming: Program Design
Including Data Structures, Fourth Edition

for Loop Examples

for(1 =0 ; 1 < 5 ; 1i++)
{
cout << 1 << ™ 7,

)
e Different starting points

 Complex conditions

Different counter updates
— Increment (1++) vs. decrement (1 —-)
— Count by multiples (i = 1 + 3)

for Loop Examples

EXAMPLE 5-7

The following for loop prints the first 10 non negative integers:

for (1 = 0; 1 < 10; i++)
cout << 1 << " ",
cout << endl;

EXAMPLE 5-8

1. The following for loop outputs Hello! and a star (on separate lines)
five tmes:

for (1 = 1; 1 <= 5; i++)

{
cout << "Hello!"™ << endl;
cout << """ << endl;

}

2. Consider the following for loop:

for (1 = 1; 1 <= 5; i++)
cout << "Hello!" << endl;

cout << " << endl;
C++ Programming: Program Design

Including Data Structures, Fourth Edition

for Loop Examples

You can count backward using a for loop if the for loop control expressions are set correctly.
For example, consider the following for loop:

for (i = 10; i >=1; i--)
cout << " " << i,
cout << endl;

The output is:

10 9876 54321

You can increment (or decrement) the loop control variable by any fixed number. In the
following for loop, the variable is initialized to 1; at the end of the for loop, 1 is
incremented by 2. This for loop outputs the first 10 positive odd integers.

for (i =1; 1 <= 20; 1 = 1 + 2)
cout << " " << 1;
cout << endl;

C++ Programming: Program Design
Including Data Structures, Fourth Edition

All three loops have their place in C++

— If you know or can determine in advance the number of
repetitions needed, the for loop is the correct choice

— If you do not know and cannot determine in advance the
number of repetitions needed, and it could be zero, use a
while loop

— If you do not know and cannot determine in advance the
number of repetitions needed, and it is at least one, use a
do...whileloop

Nested Loops
for (1 = 1; 1 <= 5; 1i++)

for (3 = 1; j <= i; Jj++)
{

cout << "*";

}
cout << endl;

}

Nested Loops

for (1 = 1; 1 <= 5;

for (§ = 1; 3§ <=
{

COUt << "*";

}
cout << endl;

* Qutputs:

* %
* Kk Kk
* Kk kK

* Kk k kK

i4++)

1,

Jt++)

I

1
2 1
2
3 1
2
3
4 1
2
3
4
5 1
2
3
4
5

Exercise

 Draw the pattern created by this code (the top for
statement has changed):

for (i = 5; 1 >= 1; i--)
for (7 = 1; J <= 1; J++)
COUt << "*";

cout << endl;

