
A Repetitive Task

• Get six numbers from the user

• Add them all together

• Print the result to the screen

• Requires:

– Six variables to hold input (e.g. num1, num2, num3, etc.)

– Six input statements

• Repetitive and inefficient

– Worse, what if it was 1000 numbers (perhaps from a file
rather than from a user)?

Repetitive Execution

• A better solution:

– Tell the computer to iterate, to do the same thing six times
• Get a number from the user

• Add it to a running total

– Then print the result

• Requires:

– Two variables (input and total)

– One input statement for each iteration

• Pretty much any real program involves iteration

Conditional Execution

• if…else is used to control conditional execution

if(condition)

{

// do some stuff only if condition is true

}

• Conditional execution happens 0 or 1 time

• Condition is a logical expression
– Evaluates to true (1) or false (0)

– Can be a literal, a variable, a function or an expression

Iterative Execution

• while used to control iterative execution (looping)

while(condition)

{

// do some stuff repeatedly as long

// as condition is true

}

• Iterative execution happens 0 or more times

• Condition is a logical expression
– Evaluates to true (1) or false (0)

– Can be a literal, a variable, a function or an expression

• Infinite loop: continues to execute endlessly

– Avoided by including statements in loop body that assure
exit condition is eventually false

C++ Programming: Program Design
Including Data Structures, Fourth Edition

5

while Looping (Repetition)

Structure

Elements of an Iterative
Statement

• There are three key parts to an iterative statement:

– Initialization (before the loop)
• What are the values of variables set to before the loop starts?

– Condition (the while condition)
• When does the loop quit?

– Update (in the body of the loop)
• How are those values changed in the loop?

Example Case: Counter Loop

• Use a while loop to do something a predetermined
number of times

1. Initialization (before the loop)
• Declare a variable to use as a counter

• Assign it the value to start counting at

2. Condition (the while condition)
• Check to see if the counter value has reached the target count

– If it has, quit the loop

3. Update (in the body of the loop)
• Increment or decrement the counter value

• Do the other repetitive tasks as well

4. Steps 2 and 3 repeat

C++ Programming: Program Design
Including Data Structures, Fourth Edition

8

while Looping (Repetition)
Structure (continued)

The Rest of the Loop

• The body of a counter loop must update the counter

– But it also does whatever repetitive tasks you are trying to
accomplish
• Update other variables

• Get input

• Print output

• Etc…

Exercise
 int i = 0, j = 0;

 while(i < 5)

 {

 j = j + 10;

 i++;

 }

• Initialization:
– Both i and j are set to 0 before the loop

• Update:
– Both i and j are assigned new values in the body of the loop

• Condition:
– The loop stops based on the value of i

Exercise
• What are the values of i, j at the beginning of each

iteration of this loop?

 int i = 0, j = 0;

 while(i < 5)

 {

 j = j + 10;

 i++;

 }

Iteration i j

first

second

third

…

Exercise

• Write the output of the following loops:

a: int i = 0;

 while (i < 5)

 {

 cout << i << “ ”;

 cout << endl;

 i++;

 }

b: int i = 0;
 while (i < 5)
 {
 i++;
 cout << i << “ ”;
 }
 cout << endl;

Example Case: Input Condition

• Use a while loop to do something until input (user,
file, etc) tells us to stop

1. Initialization (before the loop)
• Declare a variable to hold the user input

• Assign it an initial value

2. Condition (the while condition)
• Check to see if the input variable matches the target value

– If it does, quit the loop

3. Update (in the body of the loop)
• Get new input

4. Steps 2 and 3 repeat

Exercise
• Write a while loop that:

– Asks the user to enter a number

– If the number is -99 it quits

– Otherwise, adds that number to a running total

– And repeat

– Initialization
• Variables to hold user input and the accumulated total

– Initial values?

– Condition
• Is the latest input equal to -99?

– Update
• Add the last number to the total

• Get the next user input

