* All input and output streams use:
— Sequential access
— The same functions and operators

* Can access multiple streams in the same program

— cout and cin are just streams we use a lot

 Sample input:
This 1s a set of five numbers
4.5 7 216 0.432 11

* Afileis an area in secondary storage to hold data

* There are five things you need to do for file I/O
1. Include the fstream header

This gives access to the data types 1 fstreamand ofstream

2. Declare file stream variables

Just like somewhere inthe iostream header it declares:

ostream cout;

You must declare:

ofstream outFileStream;
ifstreamis aspecifictype of istream
ofstreamis a specific type of ostream

File Input/Output

* Five things for file I/O (continued)

3. Connect your new file stream variable to a file, and open
it for reading (1 fstream) or writing (of st ream)

outFileStream.open(“somefile.txt”)

outFileStream.open(“c:\\somefile.txt”)

4. Read from the file or write to the file

* Same syntax as reading/writing to the cin/cout streams
outFileStream << “Put this 1n a file” << endl;
inFileStream >> x >> vy >> z;

getline(inFileStream, myLine);

5. Close the files when you’re done reading/writing

outFileStream.close ()

Overwrite vs. Append Modes

* Files may be opened with different modes

— open () has an optional second argument to specify the
mode

* By default, output file streams overwrite an existing file
* To append (add to the existing file):

outFile.open("c:\\hw20utput.txt", i1os::app);

e Useawhile looptoread from a file until you reach
the end

1. Initialization (before the loop)
e Declarean i fstreamvariable

* Open the file you want to read from

2. Condition (the while condition)

e Checkto see if you’'ve reached the end of the file
— Ifit does, quit the loop

3. Update (in the body of the loop)
e Get new input from the file stream
e Do something with that input

4. Steps 2 and 3 repeat

Checking for End of File (EOF)

* Using the input stream as a condition, it is:
— falseifitisin an error state
— falseifit has tried to read an EOF
— true otherwise

* You can also check explicitly by calling:
inputStreamVariable.eof ()

— (returns true if the stream is at the end of the file)

