
File Input/Output

• All input and output streams use:

– Sequential access

– The same functions and operators

• Can access multiple streams in the same program

– cout and cin are just streams we use a lot

• Sample input:
This is a set of five numbers

4.5 7 216 0.432 11

File Input/Output

• A file is an area in secondary storage to hold data

• There are five things you need to do for file I/O
1. Include the fstream header

• This gives access to the data types ifstream and ofstream

2. Declare file stream variables

• Just like somewhere in the iostream header it declares:

ostream cout;

• You must declare:

ofstream outFileStream;

• ifstream is a specific type of istream

• ofstream is a specific type of ostream

File Input/Output

• Five things for file I/O (continued)

3. Connect your new file stream variable to a file, and open
it for reading (ifstream) or writing (ofstream)
outFileStream.open(“somefile.txt”)

outFileStream.open(“c:\\somefile.txt”)

4. Read from the file or write to the file
• Same syntax as reading/writing to the cin/cout streams

outFileStream << “Put this in a file” << endl;

inFileStream >> x >> y >> z;

getline(inFileStream, myLine);

5. Close the files when you’re done reading/writing
outFileStream.close()

Overwrite vs. Append Modes

• Files may be opened with different modes
– open() has an optional second argument to specify the

mode

• By default, output file streams overwrite an existing file

• To append (add to the existing file):

outFile.open("c:\\hw2Output.txt", ios::app);

Example Case: End of File (EOF)

• Use a while loop to read from a file until you reach
the end

1. Initialization (before the loop)
• Declare an ifstream variable

• Open the file you want to read from

2. Condition (the while condition)
• Check to see if you’ve reached the end of the file

– If it does, quit the loop

3. Update (in the body of the loop)
• Get new input from the file stream

• Do something with that input

4. Steps 2 and 3 repeat

Checking for End of File (EOF)

• Using the input stream as a condition, it is:
– false if it is in an error state

– false if it has tried to read an EOF

– true otherwise

• You can also check explicitly by calling:
 inputStreamVariable.eof()

– (returns true if the stream is at the end of the file)

