A program can proceed:
— Sequentially
— Selectively (branch) - making a choice
— Repetitively (iteratively) - looping

Conditional Execution

1f is areserved word
The most basic syntax for i f:

1f(condition)

statement

The statement is executed if the condition evaluates
to true

The statement is bypassed if the condition evaluates
to false

C++ Programming: Program Design
Including Data Structures, Fourth
Edition

bool Data Type and Conditions

A condition can be a boo1 variable

The data type bool has logical (Boolean) values
trueand false

bool, true,and false are reserved words
The identifier t rue has the value 1
The identifier false has the value O

C++ Programming: Program Design
Including Data Structures, Fourth
Edition

e Earlier versions of C++ did not provide built-in data
types that had Boolean values

* Logical expressions evaluate to either 1 or O

— The value of a logical expression was stored in a variable of
the data type int

* You can use the int data type as a condition

Logical Expressions

 General syntax for 1 f:
1f(logical-expression)

statement

* Alogical expression is any expression that evaluates
totrueorfalse

— Aliteral (anything but O is true)

— A variable (any built-in type)

— A function (should return bool or int)

— Any expression that evaluates to bool or int

C++ Programming: Program Design
Including Data Structures, Fourth
Edition

Logical Expressions

* Arithmetic expressions
— Built with arithmetic operators
— Evaluate to numbers (integer or floating-point)
3 + 5
(7 / 2) * 4.0

* Logical expressions
— Built with relational operators
— Evaluateto true or false
3 ==
“‘hello” < “goodbye”

C++ Programming: Program Design
Including Data Structures, Fourth
Edition

Relational Operators

TABLE 4-1 Relational Operators in C++

— equal to

1= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

C++ Programming: Program Design
Including Data Structures, Fourth
Edition

Comparing Numbers

* Integer and floating-point types can be compared
— 8 < 15 evaluatesto true
— 6 != 6 evaluatesto false
— 2.5 > 5.8 evaluatesto false
— 5.9 <= 7 evaluatesto true

C++ Programming: Program Design
Including Data Structures, Fourth
Edition

Comparing Characters

TABLE 4-2 Evaluating Expressions Using Relational Operators and the ASCII Collating
Sequence

The ASCIl value of * " is 32, and the ASCII value of
'a'is 97.

T 1 T 1
< e true Because 32 < 97 is true, it follows that ' ' <
Ta' is true.
The ASCII value of "R" is 82, and the ASCII value of
TR'" > 'T! false "TYIs B4,
Because 82 > 84 is false, it follows that "R' >
'T' is false.
The ASCII value of "+" is 43, and the ASCII value of
T4l g "1 false "t Is 42.
Because 43 < 42 is false, it follows that "+' <
T*1 s false.
The ASCII value of "6" is 54, and the ASCII value of
T=T1
TET <= 151 I >' is 62.

Because 54 <= 62 is true, it follows that "6"
= '>'" s true.

C++ Programming: Program Design
Including Data Structures, Fourth
Edition

Relational operators can be applied to strings

Strings are compared character by character, starting
with the first character

Comparison continues until either a mismatch is found
or all characters are found equal

If two strings of different lengths are compared and the
comparison is equal to the last character of the shorter
string

— The shorter string is less than the larger string

Note: this does not work for comparing 2 string literals!

Examples

EXAMPLE 4-9

if (score >= 60)
grade = 'P';

In this code, if the expression (score >= 60) evaluates to true, the assignment state-
ment, grade = "P';, executes. If the expression evaluates to false, the statements (if
any) following the if structure execute. For example, if the value of score is 65, the
value assigned to the variable grade is "P".

C++ Programming: Program Design
Including Data Structures, Fourth
Edition

11

EXAMPLE 4-10

The following C++ program finds the absolute value of an integer:

//Program: Absolute value of an integer
#include <iostream>
using namespace std;
int main()
{ int number, temp;
cout << "Line 1l: Enter an integer: ";
cin >> number;
cout << endl:;
temp = number;

if (number < 0)
number = -number;

cout << "Line 7: The absolute value of "
<< temp << " is " << number << endl;

return 0;

}

Sample Run: In this sample run, the user input is shaded.

Line 1: Enter an integer: -6734
Line 7: The absolute value of -6734 is 6734

//Line
J//Line
J//Line
//Line
//Line
//Line

//Line

oy n

Common Syntax Errors

Consider the following statement:

if score >= 60 //syntax error
grade = 'P';

This statement illustrates an incorrect version of an if statement. The parentheses around
the logical expression are missing, which 1s a syntax error.

EXAMPLE 4-12

Consider the following C++ statements:

if (score >= 60); //Line 1
grade = 'P'; //Line 2

Because there is a semicolon at the end of the expression (see Line 1), the 1f statement in
Line 1 terminates. The action of this if statement 1s null, and the statement in Line 2 1s
not part of the if statement in Line 1. Hence, the statement in Line 2 executes regardless
of how the 1f statement evaluates.

C++ Programming: Program Design
Including Data Structures, Fourth
Edition

13

Two-way Conditional Execution

* if can be paired with else
1f(logical-expression)
statementl

else

statement?
* |fthe condition is t rue, statementl is executed
e |fthe conditionis false, statement2 is executed

C++ Programming: Program Design
Including Data Structures, Fourth 14
Edition

One-Way Selection

O
l

expression — true —EEEESEYCITENLS

false

l
®-

FIGURE 4-2 One-way selection
C++ Programming: Program Design

Including Data Structures, Fourth
Edition

15

Two-Way Selection

®
'

r false — true j

statement2 statementl

\ °- \
.

P
-

FIGURE 4-3 Two-way selection

C++ Programming: Program Design
Including Data Structures, Fourth
Edition

16

Example

Consider the following statements:

if (hours >
wages =

else
wages =

40.0)
40.0 * rate +
1.5 * rate * (hours - 40.0);

hours * rate;

//Line

//Line
//Line
//Line

2
3
4

If the value of the variable hours is greater than 40. 0, then the wages include overtime
payment. Suppose that hours is 50. The expression in the if statement, in Line 1,
evaluates to true, so the statement in Line 2 executes. On the other hand, if hours s

30, or any number less than or equal to 40, the expression in the if statement, in Line 1,
evaluates to £alse. In this case, the program skips the statement in Line 2 and executes the
statement in Line 4—that is, the statement following the reserved word else executes.

C++ Programming: Program Design
Including Data Structures, Fourth

Edition

17

Common Syntax Errors

EXAMPLE 4-14

The following statements show an example of a syntax error:

if (hours > 40.0); //Line 1
wages = 40.0 * rate +

1.5 * rate * (hours - 40.0); //Line 2
else //Line 3
wages = hours * rate; //Line 4

The semicolon at the end of the if statement (see Line 1) ends the if statement, so the
statement in Line 2 separates the else clause from the 1f statement. That 15, else is all
by itself. Because there is no stand-alone else statement in C++, this code generates a
Syntax error.

C++ Programming: Program Design
Including Data Structures, Fourth
Edition

18

Block Statements

* A block (or compound) statement looks like:

{
statementl
statement?

statementn
}

* A block can be used anywhere a statement can be
used

C++ Programming: Program Design
Including Data Structures, Fourth
Edition

19

Conditional Block Statements

1f (age > 18)

cout << "No longer a minor." << endl;
else

cout << "Still a minor." << endl;

C++ Programming: Program Design
Including Data Structures, Fourth
Edition

20

Conditional Block Statements

1f (age > 18)

{
cout << "No longer a minor." << endl;
}
else
{

cout << "Still a minor." << endl;
}

C++ Programming: Program Design
Including Data Structures, Fourth
Edition

21

Conditional Block Statements

1f (age > 18)
{
cout << "No longer a minor." << endl;
cout << "Eligible to vote." << endl;
}

else
{
cout << "Still a minor." << endl;
cout << "Not eligible to vote." << endl;

C++ Programming: Program Design
Including Data Structures, Fourth 22
Edition

More Than 2 Choices

e Series of 1 f statements:
1f(logical-expressionl)

{

statementl

if(logical-expression?)
statement?

if(logical-expression3)

statement3

}
— Checks all three conditions

— Can’t have a default e 1 se condition
— Used for statements that are not mutually exclusive

More Than 2 Choices

* For mutually exclusive conditions, use an i f..else tree
— Stops when a condition is true
— Can have a default €1 se condition

1f(logical-expressionl)
{
statementl
}
else 1if(logical-expression?2)
{
statement?
}
else 1if(logical-expression3)
{
statement3

}

else

{

statementid

Example: Date Conversion

* Input
— Date in the form yyyy-mm-dd
— (e.g. 2009-09-24)
* QOutput
— Date in the form month day, year
— (e.g. September 24, 2009)

Write a simple fast food drive-through ordering
program for Large Joe’s restaurant. The menu is:

Triple Burger: S4.99
Fried Chicken $6.99
French Fries S2.29

Sample run (user input in bold):

== Welcome to Large Joe's, can I take your order? ==
For a triple burger, press 1

For a heap of fried chicken, press 2

Your order: 1
Would you like fries with that? (y/n): y

Your total is $7.28, please drive through.

* Large Joe’s now has bacon!

— Adding bacon to your burger costs $0.99

— Modify the program so that if the customer orders a
burger, the program asks them:

Would you like bacon on your burger? (y/n): y

— If they answer yes, add the cost to their order
— Don’t ask about bacon if they didn’t order a burger!

