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L ocality and stability of the cascades of two-dimensional turbulence
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We investigate and clarify the notion of locality as it pertains to the cascades of two-dimensional turbulence.
The mathematical framework underlying our analysisis the infinite system of balance equations that govern the
generalized unfused structure functions, first introduced by L'vov and Procaccia. Asa point of departure we use
arevised version of the system of hypotheses that was proposed by Frisch for three-dimensional turbulence. We
show that both the enstrophy cascade and the inverse energy cascade are local in the sense of non-perturbative
statistical locality. We also investigate the stability conditions for both cascades. We have shown that statisti-
cal stability with respect to forcing applies unconditionally for the inverse energy cascade. For the enstrophy
cascade, statistical stability requires large-scale dissipation and a vanishing downscale energy dissipation. A
careful discussion of the subtle notion of locality is given at the end of the paper.
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I. INTRODUCTION

The physical notion of locality goes back to the
Kolmogorov-Batchel oridea[1-3] of an eddy cascadein three-
dimensional turbulence where most of the energy is passed on
from large eddies to smaller eddies by cascading through the
intermediate scales. The dimensiona analysis argument be-
hind the theory of two-dimensional turbulence proposed by
Kraichnan[4] , Leith [5] and Batchelor [6] (KLB) is based in
part on the conjecture that a similar physical principle gov-
erns the upscale transfer of energy and the downscale trans-
fer of enstrophy. In spite of the importance of the concept of
locality to the foundations of the theory of hydrodynamic tur-
bulence, there is no consensus on how to handle the concept
rigorously. The need for amore rigorous understanding of lo-
cality becomes more pressing in light of some paradoxical as-
pects of the theory of two-dimensional turbulence which will
be briefly reviewed below. Because quasi-geostrophic mod-
els of geophysical flows [7-11] relevant both to meteorology
and oceonography, and two-dimensional models of magneti-
cally confined plasmaturbulence[12-14] have asimilar math-
ematical structure with two-dimensional turbulence, we can-
not simply disregard the paradoxes of two-dimensional turbu-
lence asirrelevant on the groundsthat it is afictitious fluid.

For example, recent numerical simulations [15-18] have
validated the KLB prediction k=2 for the energy spectrum of
the downscale enstrophy cascade. It remains unclear, how-
ever, whether the enstrophy cascadeis alocal cascade or non-
local cascade. One side of the argument is that it cannot be
alocal cascade because the slope of the energy spectrum is
too steep. On the other hand, if it is not alocal cascade, then
one has to explain why the prediction of dimensional analysis
agrees with numerical simulations. Furthermore, it is worth
remembering that prior to the groundbreaking paper by Lind-
borg and Alvelius [15], every attempt to simulate an enstro-
phy cascade failed. It is now understood that the presence of
adissipation sink at large scales is necessary for a successful
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simulation of the enstrophy cascade [19-21]. Nonetheless, we
do not have a good grasp on why the presence of such a dis-
sipation sink is sufficient. A recent theory by Falkovich and
Lebedev [22, 23] predicts the scaling of the logarithmic cor-
rections to the energy spectrum as well as the higher order
structure functions of the vorticity for the enstrophy cascade.
However, locality, and the existence of the enstrophy cascade
itself are assumptions that are being entered into the theory.
The relevant question is to understand theoretically the condi-
tions needed for the existence of the enstrophy cascade.

Ironically, the inverse energy cascade presents with an even
more confusing situation. From a theoretical standpoint one
would not expect the inverse energy cascade to be anything
but local. From the standpoint of numerical simulations, there
are many positive reports of the predicted k —/3 energy spec-
trum [24-29]. The most convincing simulation of the inverse
energy cascade has been reported in the paper by Boffetta et
al.[29], where in addition to the k—5/3 prediction, the 3/2 law
has al so been confirmed. On the other hand, the locality of the
inverse energy cascade has been challenged on the grounds of
numerical simulations giving conflicting results[30-33]. The
current understandingisthat under certain conditionsthereare
coherent structures that spontaneously form while the inverse
energy cascade converges to stationarity. Apparently, the in-
verse energy cascade, as a physical process, continues to take
place but it is hidden by the coherent structures which givethe
dominant contribution to the energy spectrum. Removing the
coherent structures artificially by postprocessing simulation
data recovers the k=5/3 energy spectrum [30, 32, 34]. This
aspect of the inverse energy cascade is not well understood.
Furthermore, this phenomenon of the spontaneous generation
of coherent structures is of considerable interest to oceonog-
raphers.

In both cases reviewed above the issue at hand is the break-
down of locality. The theoretical challenge is to understand
how and why it happens. It should be noted that recent theo-
retical work [22, 23, 35-40] that expands on the KLB theory
takeslocality aswell asthe existence of the enstrophy cascade
and theinverse energy cascade as assumptions. Asaresult, al-
though various aspects of these cascades have been explained,
the more fundamental question of the conditions needed for



the existence of the cascades remains elusive.

In the present paper we analyze the locality of the cascades
of two-dimensional turbulence by adapting and generalizing
the non-perturbative theory of L'vov et al. [41-46]. The
mathematical framework is an infinite system of equations
that govern the generalized unfused structure functions, the
so-called balance equations. We aso employ a scaling as-
sumption, the fusion rules, which we conjecture to be valid
in the enstrophy cascade and the inverse energy cascade. The
fusion rules govern the scaling of the generalized structure
functions when a subgroup of coordinates of velocity differ-
ences approach each other. In previouswork [39, 40], we used
the balance equations to predict a linear superposition princi-
ple between the downscale enstrophy cascade and the hidden
downscale energy cascade which exists for finite Reynolds
number. In that argument we did not use the fusion rules but
we did assume the existence of the cascades. In the present
paper we will consider more carefully the implications of the
fusion rules on the existence question.

The physical intuition behind our argument is as follows.
Let Fy be the generalized structure function and let {p, be its
scaling exponent. These structure functions satisfy a system
of equations of the form

OnFng1+ In = DnFn+ Qn. N

Here, OnFnh.1 is the nonlinear term that includes the effects
of pressure and advection, |, is a term associated with the
sweeping interactions, Qy, is the forcing term, and Dy, is the
dissipation operator. From the fusion rules it can be shown
that the integralsin O,F,. 1 arelocal under the following con-
ditions: for the downscale cascade UV locality requires{, >0
and IR locality requires {1 < {>+ {n_1; for the upscale cas-
cade UV locality requires {n — {_2 > 0 and IR locality re-
quires {1 > o+ 1. These conditions can be shown to be
satisfied by the Holder inequalities. It follows that the inter-
actions represented by O,F,,1 arelocal and also self-similar
with scaling exponent {1 — 1.

The implication of this argument is that the nonlinear in-
teractions accounted for by the term O ,F, 1 arelocal both for
the enstrophy cascade and for theinverse energy cascade. This
notion of locality is called statistical non-perturbative locality
[43]. However, non-locality, in a different stronger sense, can
arise from the forcing term Qp. Although we may demand
that the forcing spectrum be confined to a narrow interval of
length scales, it does not follow that the forcing term Qp, will
forcethe bal ance equationsonly at those length scales. For the
case of gaussian forcing, we show that the scaling exponent of
Qn istn = &n_2 + g2 With gz = 2 for the downscal e enstrophy
cascade and gz < O for the inverse energy cascade. It follows
that to have true locality we need gn — ({ni1— 1) > 0 inthe
downscale enstrophy cascade and gn — (&1 —1) < 0inthe
upscale energy cascade. These conditions are needed for the
statistical stability of the cascades with respect to forcing per-
turbations.

It should be noted that nonlocality viathe forcing term Qp,
is only one of anumber of possible scenarios for losing local-
ity. The sweeping term |, and the dissipation term DR, can
also destroy locality under certain conditions. A preliminary

discussion of the sweepingterm |, was given in aprevious pa-
per [47], and the dissipation term will be discussed in afuture
publication. Finaly, it isalso possibleto lose locality through
violation of the fusion rules. In that case, the term O R 1
itself would not be local. In the present paper we will show
that the UV locality of the term OpF,, 1 is very robust, even
under violation of the fusion rules. However the same cannot
be said for the IR locality. Our viewpoint then is to consider
first the problems that can arise in the favorable case where
the fusion rules are valid, before examining the validity of the
fusion rules themselves in more depth.

The argument of the present paper supports the conjecture
of strong universality [48] for the direct energy cascade of
three-dimensional turbulence and the inverse energy cascade
of two-dimensional turbulence. However, it definitely rules
out strong universality for the downscale enstrophy cascade.
Because the argument relies on the hypothesis that the fusion
rules hold for the downscale enstrophy cascade and the in-
verse energy cascade, it is not completely rigorous. On the
other hand, the hypothesis can be investigated by numerical
simulation. The p = 2 fusion rule, which is the essential one
with respect to thelocality argument, has been proven [49-52]
for the direct energy cascade of three-dimensional turbulence,
and there is further support by experiments [53-58]. For the
related problem of the passive scalar [59], the fusion rules
have been proved for all p [60] and have aso been confirmed
experimentally [61, 62]. The problem of two-dimensional tur-
bulence is similar enough to both problems to make the hy-
pothesis plausible.

From a more philosophical point of view, one can say that
the scaling relations implied by the fusion rules are in fact
a generalized definition of the physical concept of a “cas-
cade’. As has been pointed out previously [43], from a phys-
ical standpoint, the fusion rules mean that the large scales are
correlated with the small scalesin avery particular way where
the self-similarity characteristics of theflow at the small scales
“forget” the ongoing physical processes at the large scales
(and vice versafor theinverse cascade) which leads to univer-
sal scaling. The present argument then establishes the consis-
tency between locality and the scale correlations needed for
universality. The conditions needed for this consistency are
necessary conditions for the existence of the cascades them-
selves.

The paper is organized as follows. Section 2 reviews the
generalized balance equations of the generalized unfused cor-
relation tensors, the emphasis being on distinguishing the
sweeping interactions from the local interactions. Section 3
introduces and motivates our revisions of the Frisch frame-
work of hypotheses as the first step towards a theory of
two-dimensional turbulence. The main idea is replacing the
anomalous sink hypothesis with a universality hypothesis,
which implies the fusion rules hypothesis. In section 4, we
extend and generalize the locality proof of L'vov and Procac-
cia [43] to the cascades of two-dimensional turbulence. In
section 5, we then turn to the question of cascade stahility,
with respect to random gaussian forcing. We find that the
inverse energy cascade is stable, but that the enstrophy cas-
cade is only borderline stable, with stability improving as the



downscale energy flux is taken to zero. Section 6 discusses
various subtleties that arise from our investigation regarding
the concept of locality. Some technical matters are relegated
to the appendices.

Il. THE GENERALIZED BALANCE EQUATIONS

We now begin by reviewing the theory of the generalized
balance equations. These equations were first derived by
L'vov and Procaccia [43] and they are the foundation of pre-
viouswork [39, 40, 47] aswell asthis paper. Thetwo features
of the balance equationsthat we would like to stressin this pa-
per arethe separation of the interaction terminto local interac-
tions and sweeping interactions, and the fact that the forcing
term can be written in closed form for the case of Gaussian
forcing. We also derive the balance equations that govern the
generalized structure functions of the vorticity.

A. Préeliminaries

The governing equations of two-dimensiona turbulence
are:
dUg
7+U33ﬁua=—3ap+DUa+fm %)
aautx - O, (3)

where f,, istheforcing term, and D is the dissipation operator
given by

D = (—1) Ly V2 4 (—1)™Higy—2m, 4

Heretheintegers x and mdescribe the order of the dissipation
mechanisms, and the numerical coefficients v, and  are the
corresponding viscosities. D is the overall dissipation oper-
ator. The case k¥ = 1 corresponds to standard molecular vis-
cosity. The term f,, represents stochastic forcing that injects
energy into the system at arange of length scalesin the neigh-
borhood of the integral length scale £g. The term BV 2"y,
describes a dissipation mechanism that operateson large-scale
motions. The operator V2™ represents applying the inverse
Laplacian V2 repeatedly m times. In Fourier space this op-
erator is diagonalized, and its definition may therefore be ex-
tended to fractional values for m. The same holds for the pa-
rameter k.

To eliminate pressure we multiply both sides of the Navier-
Stokes equation with the operator P , g = 845 — dadp V—2and
we employ P,gug = ug and P, 5dg = O'to obtain

Jdu
a—t“‘ + Popdy(Ugly) = Dg + P fp. (5)

Theoperator P, 5 can beexpressedin termsof akernel P,z (x)
as

PagVp(x) = [ dyPug (X =YV () ©)

— [ dyPupy)vs(x- ). ™

For two-dimensional turbulence P, (x) is given by

19, XaX,
Pap (%) = 8up8(x) — 5 {rizﬁ 2‘:—4“] .

)

The scalar vorticity ¢ is given by { = g,dqUp With £,
the Levi-Civita tensor in two dimensions. From the incom-
pressibility condition d,u, = 0 it follows that thereis afunc-
tion y, called the streamfunction, such that ug = €,5dg Y.
Using the identity €,5€3, = Say One then shows that ¢ =
EapE€py0adyW = V2y from which we get v = V=2¢ and
Uy = eaﬁc?ﬁV‘ZC.

The vorticity equation is obtained by differentiating  with
respect to time and employing the Navier-Stokes equations:

2 w0 =De g ©

where J(y, §) is the Jacobian defined as

and g = €,30dq fg is the forcing term.  The nonlinear term
J = J(y, ) has been obtained by employing the following
argument

J= Eap aaﬂ)ﬁy35(qu5) = Eup 305 [uyﬁyuﬁ] (11)
= Uydy € + (€4 daly) (dyUp) (12)
=Udy¢ =J(y,0). (13)

The term (g,50aUy)(dyUg) represents vortex stretching, but
in two dimensionsit can be shown that

(€apdally) (dyup) =0, (14)

by direct substitution of the vector components.

B. Thebalance equations

To write equations concisely, we introduce the following
notation to represent aggregates of position vectors

X = (x,x), (15)
{X}n={X1,X2,...,Xn}, (16)
{X}lr(]:{le"'axk—lvxk-‘rla"'vxn}' (17)

We use the notation {X},+ Ax as a shorthand to represent
shifting al the constituent vectors of {X} by the same dis-
placement Ax. Similarly, A{X}n represents taking the scalar
product of A with every vector in {X} . Finaly, the notation
[[{X}nll ~ R meansthat al point to point distances in the ge-
ometry of velocity differences {X}, have the same order of
magnitude R. And, the notation ||[{X} || < [[{Y }n|| means
that all the point to point distancesin {Y } are much larger
than all the point to point distancesin {X} p.
Let wg (X,X';t) bethe Eulerian velocity differences

Wa(X,XI,t) :Ua(X,t)fua(Xl,t). (18)



The eulerian one-time fully unfused correlation tensors are
formed by multiplying n velocity differencesw , (x,X',t) eval-
uated at 2n distinct points

> . (19)

When dl velocity differences share one point in common, that
isx'x = Xo, We say that the correlation F, is partially fused.
The generalized balance equations can be derived by dif-
ferentiating F, with respect to t and substituting the Navier-
Stokes equations (see appendix A for details). Thisyieldsthe

Fa({X}n,t) = < Lliwak(xk;t)

equations

dF,

Tt + OnFnt1+ In = DnFn+ On. (20)

Here Dy, is the differential operator representing dissipation,
given by

n

Dn= Y [V(VZ*+

2 VE)+B(VI VI (21)

and O, isthe linear integrodifferential operator such that

(OnFnya) ({%, X }n,t) = /On({x}nv{Y}n+1)Fn+l({Y}n+1at) d{Y i1 (22)
= i Din({X,X'}n,t) = Dn({X,X'}n,1), (23)
k=1

where Dy, is given by
Din 2 " ({x,X'}n,t )=5n

With Dyny = Dini1 + Dini2 + Diniz + Dinig, and

n .
=53 [ P (DG P (X .0, (24)
=1

Dgél.i.akflﬁawrl-.,an {X, X/}my7 a(xn+1,xk r:x+11 akflﬁakJrl Otn+1({xm m=17 _ y7X/k _ y’ {Xm}ﬂhk+1vxk _ y’ XI); (25)
aOCrHl,Xk rg:]_ 1P 1 O‘n+1({xm m=17 - y7X,k =Y, {Xm}ﬂlzk+l7xk =Y, Xl' )7 (26)
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Theterm I, represents the sweeping interactions, and it is given by

n
Irtlxlazman({xvx/}nat) = Z (ay,xk + ay,x’k) <u}’ {Xkax k}nv [Hwal X 7X It ‘| > .

k=1

an+1({xm}m=1axk7yvx k— y,{xm}Lk+17X'k*anI)a (27)
m:]_a k—Y,X kfya{xm}lr%:k—}—lvxlk*yv)(q)' (28)
(29)

where Uy ({Xk,X'k}n,t) isthe generalized mean velocity: C. Balance equationsfor the vorticity

Ua({2,2}mt) = zikg Ua(Zot) + Ua(Zit)),  (30)

Theterm Q,, representsthe forcing term f,, and it reads
Qn({X}n,t

where Qyn reads
Qe 1P (X} 1,Y 1) (32)

n-1
= < [Hwak(xkvt)] Pp (th)>v (33)
k=1

fa(X,t) — T (X,1).

) =Y, Qun({X}, Xi.1), (31)
k=1

A similar set of equations can be derived for the general-
ized structure functions of the vorticity. Let g(x,x’,t) be the
vorticity difference defined as

Q(X,X,,t) - C(th) - C(Xlat) (34)
= &ap (aa,x + aa,x/)wﬁ (X, Xla t)v (35)

and let Vi, ({X }n,t) bethe generalized structure function of the
vorticity defined as
> . (36)

Vn({X}n, 1) < ll_[q X 1)

It is easy to see that the vorticity generalized structure func-
tionsarerelated to the velocity generalized structure functions




by
Va({X}n,t) (37)

n
= H [Sakﬁk(aak,xk + aak,X'k)]Frglnlﬁn ({X}nvt)' (38)
k=1

Let T, be an abbreviation for the differential operator that
transforms F,, to V,, such that Vi, = TFn.

The balance eguations for V,, and be derived easily by ap-
plying the operator T, on the balance equations for F,. The
resultis

dVh

ot + ‘Inonj'r:jlvn-»-l +Ih=

DnVn + Qn . (39)

-

In({X}n,t) =

1

k=1

The trick is to apply the operators &g (Jo; x; + 9y ;)
one by one onto the ensemble average in eg. (425 wherein
n— 1 of the wp, factors are constant for j # | with respect to
x1,X| , and use the identity &,y dy[uguy] = uyd,¢ on the
wg, and U, factors that are both X, X' dependent. Each ap-
plication of these operators effectively converts each wp, fac-
tor into a corresponding q(x;,X’s, ) factor. The exact mathe-
matical form of the term ‘TnOnTnHVnH is not required. It is
only sufficient to note that onceit is shown that the expression

On n+1Vn+l—o Fn.1 islocal, then it easily follows that the
term ThOn Tn+1Vn+1 isaso local since T, is alinear differen-
tial operator.

I11. THETHEORETICAL FRAMEWORK

Both the K41 theory for three-dimensional turbulence, and
the KLB theory for two-dimensional turbulence are based on
a dimensiona analysis argument. However, Frisch [63, 64]
has suggested that Kolmogorov’'s second paper [2] leads to
the following more rigorous reformulation of the dimensional
analysis argument, based on the following three hypotheses:
(H1): At small scaes and away from any boundaries, the
velocity field is incrementally homogeneous and incremen-
tally isotropic; (H2): Under the same conditions, the veloc-
ity field is self-similar at small scales, thereby possessing a
unique scaling exponent h ; (H3): the turbulent flow has a
non-vanishing mean dissipation rate in the limit of infinite
Reynolds number (i.e., an anomalous energy sink). Then, one
uses (H1) and (H3) to derive the 4/5 law which implies that
h=1/3, and from (H2) the scaling for al structure functions
and the energy spectrum is deduced.

n
= Z(a}’xk Jrayx’ ) <uy {Xi, X'}, t)

5

Here Q, isthe forcing term and J, is the sweeping term. The
forcing term reads.

{X}m

an({x}llf(vat) = < Lﬂ q(xkvt)‘| g(Y’t>> (41)
=1

Zan {X}nvxka )7 (40)

To calculate the sweeping term we use (14) to cancel the
vortex tilting contributions. With alittle bit of algebrawe find
that

n
[805][3] (aocj Xj + aoc X’ 2 a}'Xk + ayx’ <uY {Xk,X k}n, [Hwﬁ| X aX It ‘| > (42)

fasoso]) .

In a recent paper, Frisch [65] questioned the self-
consistency of the assumption of local and incremental ho-
mogeneity. The argument essentially is that it is not obvious
whether the nonlinearity of the Navier-Stokes equations will
preserve incremental homogeneity unlessthe initial condition
is globally homogeneous. In a previous paper [47] | have ar-
gued that incremental homogeneity will be preserved in the
upscale and downscaleinertial rangesonly if the sweeping in-
teractions, represented by the |, term of the balance equations,
can be neglected in the inertial range. As | have emphasized
in that paper, this condition on the I , term is necessary for the
very existence of aninertial range! Herewewill simply takeit
for granted in order to focus our attention on the other needed
conditions.

Within the Frisch framework, many theoretical approaches
to three-dimensional turbulence that try to predict the inter-
mittency corrections to the scaling exponents of the structure
functions, can beinterpreted as extensions of the Frisch theory
where the self-similarity assumption (H2) is weakened while
the other two assumptions (H1) and (H3) are tolerated. It is
an easy exercise to reformulate the dimensiona analysis ar-
gument of the KLB theory in a similar manner. However, a
theory along these lines would already take for granted the lo-
cality and universality of the two cascades. Contrary to the
situation in three-dimensional turbulence, what we must un-
derstand are the conditions needed to satisfy universality and
locality. In previouswork [39, 40] we have proposed that the
guestions of locality and universality can be probed more rig-
orously by adapting the theoretical work of L'vov and Pro-
cacciaet al. [41-46, 52] to two-dimensiona turbulence. We
will now expand further on this idea on the remainder of the
present paper.



A. Revisionsto the Frisch framework

We propose that the Frich framework of hypotheses should
be revised asfollows:

First, we adopt Frisch’s (H1) to our formulation. We have
shown previously [47] that astronger homogeneity hypothesis
is needed to eliminate the sweeping interactions before deriv-
ing the 4/5 law. Though we may circumvent this problem by
postulating that stronger assumption of homogeneity for our
framework, we believe that it is desirable to be able to estab-
lish the stronger hypothesis from first principles (see section
5 of Ref.[47]).

Second, to alow for intermittency corrections, it is neces-
sary to relax the self-similarity hypothesis (H2). One pos-
sibility is the space-time self-similarity assumption, used in
the early papers of the quasi-Lagrangian diagrammatic the-

ory [66, 67]. It was shown later that this assumption is false,
because it axiomatically implies Kolmogorov scaling and for-
bids intermittency corrections [44, 68], thus leading to a self-
inconsistent theory. The successful proposal is space one-time
self-similarity, defined below, and we shall adopt it in this pa-
per.

Third, following L'vov and Procaccia [41-43], we adopt an
hypothesis of universality. Its purposeis to replace the ad hoc
assumption of anomalous sinks. The universality hypothesis
itself claimsthat statistical symmetries are recovered at length
scales away from theforcing range even when the ensembleis
constrained by asymmetry-breaking condition at scales closer
to the forcing scale.

Taking the ideas above into consideration, we postul ate the
following hypotheses for both the enstrophy and energy iner-
tial ranges:

Hypothesis 1: The velocity field isincrementally stationary, incrementally homogeneous, and incrementally isotropic, defined

as

dFn({X}n,t)

ot

n

k=1

aslong asthe evaluations { X}, {X}n+Ar, ro+A({X}n—ro), liewithin an inertial range.
Hypothesis 2: The velocity field is self-similar in the sense that for every evaluation {X}  within an inertial range

Je > 0: Fn(A{X}n,t) = ASF({X}n,t), VA € (1—g,1+¢).

For the hypothesis of universality, we define the conditional correlations

=0,Vt e R, (44)

Z (aak,xk + aak’x/k)Fn({X}n,t) =0, (45)
Fn({X}n,t) = Fa(ro+ A({X}n—ro),t), VA € SO(2). (46)
(47)

W(Xkaxlkvt) = Wk)> ) (48)

@n({X}n, {Y Fm, {Wi}Hil,t) = < Lf[lwak(xkat)]

and use them to formulate the additional hypothesisthat in the inertia range, the conditional correlations @ |, essentially honor
the same symmetries as the unconditional correlations Fy, in the asymptotic limit where ||{Y } m|| are situated between ||{X} ||

and the forcing scale £q:

Hypothesis 3: Let {X}n and {Y }m represent the geometries of velocity differences and let W = W({Y } m, {wi};). Then,
if in the direct cascade they satisfy ||[{X}n|| < |[{Y }m|| < 4o, or alternatively if in the inverse cascade they satisfy ||[{X}n| >
[I{Y }ml| >> ¢o, then the conditional correlations @, preserveincremental stationarity, incremental homogeneity, and incremental

isotropy, with respect to {X}n, defined as

a;:” =0, (49)
3 e+ DO (X Y b (WI 5. =0 (50)
On({X}n, {Y}m, {v;k}ﬂ“:l,t) = ®n(ro+A({X}n—r0), {Y}m, {Wihls,1), VA € SO(2), (51)
and also self-similarity, with the same scaling exponents ¢, defined as
Je > 0: Dy(A{X In, Y Iy (Wi 1, 1) = A9 ({X I, {Y Fms {WiI 1), VA € (1—,14¢). (52)

Hypothesis 1 is essentially the first hypothesis in the

Frisch formulation. Hypothesis 2 is the space one-time self-



similarity principle introduced by L'vov and Procaccia [43]
in the context of three-dimensional turbulence. The scaling
exponents ¢ represent the scaling structure of each inertia
range. If 0 < {, < 2, then the energy spectrum follows a
power law given by E(k) ~ k=175 [64]. If there is a loga-
rithmic correction, then the result also holds for {, = 2. Hy-
pothesis 3 states that the statistics of the velocity field at a
certain scale still maintain the symmetries stated in hypothe-
ses 1 and 2 even when a symmetry-violating constraint is im-
posed via a conditional average at scales closer to the forc-
ing scale. The congtituent statements of hypothesis 3 shall
be referred to as universal incremental homogeneity, univer-
sal incremental isotropy, and universal self-similarity. Note
that it is essentially a more careful reformulation of the as-
sumption of “weak universality” that was proposed previously
by L'vov and Procaccia [41, 43]. The underlying idea is that
the condition w(xg,X'x,t) = wy in the definition of the con-
ditional correlations @, partitions the ensemble of all possi-
ble forcing histories consistent with the overall forcing spec-
trum and the stationarity assumption into subensembles de-
fined by the parameters {w\};\" ;. Each choice of {Y } y, repre-
sentsadistinct partition of the entire ensembleinto subensem-
bles. The assumption for the statistical behavior of the veloc-
ity field is that it remains invariant accross each subensem-
ble of forcing histories for al subensemble partitions {Y } m
(with [[{X}n]| < [I{Y }m|| < €0 if it is adownscale cascade or
[{X}nll > [I{Y }ml| > fo if it is an upscale cascade), and thus
dependent only on the overall forcing spectrum.

B. Thefusion ruleshypothesis

The immediate consequence of the universality hypothesis
isthe fusion rules, whose physical interpretation isthat differ-
ent length scales are correlated (a hint of the cascade process)
and that the governing interactions, as we shall show in the
next section, are local (a consequence of the fusion rules and
the structure of the Navier-Stokes equations). In a forthcom-
ing paper, we will show that the fusion rules also govern the
location of the dissipation length scales and that, in doing so,

they provide anomalous energy and enstrophy sinks!

Consider ageometry of velocity differences {X}  such that
all point to point distances have order of magnitude 1, and
define

FAP (LR) = Fa(H X0 RIXI p0)- (53)

The function "’ (r,R) reflects the case where p velocity dif-
ferences have separations with order of magnitude r, and
n— p velocity differences have separations with order of
magnhitude R. The case of interest is when the evaluation
(r{Xi}e_1, R{Xk}f_p.1) is within the inertial range Jn C
(R?)?"andr < R. Thefusion rulesgivethe scaling properties
of Fép) in terms of the following general form:

FiP (Aar, 2R) = AP A" P EP (1 R). (54)

Since F, is defined as the product of velocity differences we
expect thelimits A, — 0and A, — Oto converge. Thisimplies
that &np > 0 and §n — Enp > 0. A concise statement of the
fusion rules hypothesisisthat for the direct enstrophy cascade
&np = &p , and for the inverse energy cascade &np = &n — Cn—p
forl<p<n—1.Thecasesp=1and p=n-—1requiresome
additional considerations, and can be deduced, asit turns out,
from the p = 2 fusion rule (see section 1V A). We will also
consider the case of “regular” violations to the fusion rules
where the scaling exponents &y satisfy 0 < &np < &n, S0 that
the exponentson A1 and A, are both positive.

We will now briefly review the argument of L’vov and Pro-
caccia [43] that that the fusion rules hypothesis is an imme-
diate consequence of the universality hypothesis. Let us con-
sider first the case of the direct enstrophy cascade. For the
case 2 < p < n—2wewill show that for ||[{X}n|| < [[{Y }nl|
thefusion scaling is

Fa(A{X} p {Y Fnop) = AP SRy ({X 3, {Y bnop)- (55)

Let P({X}n,{wk}r_,) be the probability for the event
w(Xk, X'k, t) = wy. It follows that

n—p n—p
Fn(A{X}p, #{Y }n-p) Z/ Lljka} P(u{Y In—p, {WK}E;f)q’p(l{X}paN{Y}nfpa{Wk}E;f)kli[lde (56)

n-p
:ACP/ |J(l:£wk

= AR ({X}p, {Y }n-p)-

n—p
PUAY Fnpy {Wich =) Pp({X} p, {Y }np, {Wic}p_1) gdwk (57)

(58)

Thefactor Fn({X}p, u{Y }n_p) isnow independent of A and hasto scale as y 5.
For the case of the inverse energy cascade, again for 2 < p < n— 2 and under the same limit ||[{X} p|| < |[{Y }n|| the fusion

scaling is

Fa(A{X} p, Y bnop) = A5 5p P ({X 3, {Y Fip)- (59)



We show this with a similar argument as follows:

Fa(A{X}p, u{Y }n-p) /[HWK] (A X p, fwiche_ 1) Pnp({Y Fnop, A{X} p, {Wichie_y Hde (60)

:ucnfp/ lHWk

= p5 PRy (A{X}p, {Y Fnop).

The factor Fn(A{X}p,{Y }n—p) is now independent of u and
hasto scale as A Sn—n-».

We would like now to briefly discuss the motivation behind
our conjecture that the enstrophy cascade and the inverse en-
ergy cascade satisfy the fusion rules. First, it should be noted
that for the locality proof given in section IV we only need
the fusion rule for the cases p = 2 and p = n— 2, from which
onethen derivesthe scaling for the cases defined in Fig. 1 and
Fig. 2. For the energy cascade of three-dimensional turbu-
lencethe p = 2 fusion rule has been demonstrated by Feynman
diagram analysis [49-52]. The proof indicates that the fusion
rule essentialy follows from the assumption that the scaling
exponent §, is universal and does not change in response to
perturbations to the forcing statistics. This assumption rests
on less solid ground for the enstrophy cascade, however we
can expect it to be true at least in the experimental situations
where the cascade actually exists. It is aso worth noting that
this assumption is weaker than our hypothesis of universality,
which in some regard is a stronger assumption than what is
really needed.

There is another consideration that strongly motivates our
conjecture: the p = 2 fusion rule controls the positioning of
the dissipation length scale [42, 43, 54]. In aforthcoming pa-
per we will show that if this fusion ruleis violated, then the
dissipation length scale would not be correctly positioned to
dissipate the injected energy or enstrophy. Consequently, it is
not easy to reconcile the numerical observation of both cas-
cades with aviolation of the fusion rule p = 2. Furthermore,
asituation wherethe p = 2 ruleis satisfied and the other rules
are violated is unlikely. Finaly, in two-dimensional turbu-
lence, due to the smaller dimensionality of the problem, we
are afforded the opportunity to test of validity of the fusion
rules directly with a numerical simulation.

C. Symmetriesand the balance equations

The assumptions that we have put forth are not self-evident
axioms but hypotheses. Thus, the goal of theory is not only
to derive conclusions from these assumptions but to al so work
in the opposite direction and give reasons that justify the as-
sumptions themselves.

The argument that was given by Frisch [63, 64] beginswith
the observation that the unforced Navier-Stokes equations are

(A X} p AWidh i) @rp({Y Fn-p, A{X} p, {Wick_y) Hde (61)

(62)

invariant with respect to space and time shifts and rotations:

(t,X,u) — (t,x+Ax,u), ¥x € RY, (63)
(t,x,u) — (t,Ax,Au), VA € SO(d), (64)
(t,x,u) — (t+At,x,u), VAt € R. (65)

Furthermore, if we ignore the dissipation terms, then the
Navier-Stokes equations are also invariant with respect to the
following self-similar transformation
(t,x,u) — (A"t Ax,A"u),VA e R* heR. (66)

In hydrodynamic turbulence these symmetries are obviously
broken by the forcing term, the boundary conditions, and
the self-similarity symmetry by the dissipation terms. Frisch
[63, 64] hypothesized that these symmetries will be statisti-
cally reinstated in theinertial range when the flow is governed
by a strange attractor. The big question is: how do we prove
this? We believe that the generalized balance equations, de-
rived in the previous section, are the proper theoretical frame-
work within which this question can be addressed.

We begin by accepting the assumption of local stationarity
for the reasons given by Frisch [63, 64]. Then, the balance
equations read

OnFn+1+ In =5 DnFn+Qn. (67)

As was pointed out previously [44, 69], the advantage of us-
ing generalized structure functions where every velocity dif-
ferenceis associated with two distinct coordinatesthat are dif-
ferent from any other velocity difference, is that in the limits
v — 0and § — 0 the dissipation terms can be dropped. This
is not possible for the standard structure functions where ev-
ery velocity difference is associated with the same two coor-
dinates. We show this by using the mean-value theorem to
bound D, F, asfollows

Civ
Dol < (- +CoBRL) Rl (69)
R,
Here, C; and C; are constants independent of v and 3, and
Rmin = Min{x,, X'k : ke N, 1<k < n}, (69)
Rmax = Max{Xy,X'x 1 ke N,1 <k < n}. (70)

It is easy to see that because all the differentiations can be
performed without invoking the product rule, the viscosities



v and B multiply on a factor that remains finite in the limits
v — 0" and B — 0. Thus, |DnFn| — 0intheinertial range.
To reingtate the statistical symmetries we need a region of
length scales where Q, and |, can also be ignored. Then, one
has the homogeneous equation O nF,1 = 0, which remains
invariant both under local homogeneity and local isotropy. In
fact, it is also known [44, 45] that the homogeneous equation
isinvariant under the following similarity transformation:

{X}n — A{X}n,

consequently, it is expected to have solutions in the general
form

Fn— AT20E (71)

Fo= / dut (W)Fan, (72)

where Fp,, are the zero-modes of the operator O , which scale
as

Fﬂ,h(l{x}nvt) :)th+z(h)|:n.h({x}n’t)' (73)

Note that the same result can also be obtained from the multi-
fractal hypothesis[64]. On alarge inertial range, the leading
contribution to Fy, is asymptotically self-similar with the scal-
ing exponent {,, given by

tn= mrin(thr Z(h)). (74)

For the case of a multifractal stochastic velocity field with
D(h) defined as the fractal dimension of the set of points that
support a local Holder exponent h, the relationship between
Z(h) and D(h) isZ(h) = d —D(h) whered isthe dimension of
the velocity field, and d = 2 for two-dimensional turbulence.

It has been suggested, for the case of three-dimensional
turbulence, that the scaling exponents {,, can be calculated
from the solvability condition of the homogeneous equation
OnFny1 = 0[44, 45, 70]. Although, from a practical stand-
point, perturbative methods have been more effective[71, 72],
the solvability condition analysis reveals the underlying prin-
ciple governing the origin of the scaling exponents §,,. From
aphysical standpoint, the condition O ,F,,1 = 0 includes (for
n = 2) and extends (for n > 2) the requirement of a“ constant”
(in the asymptotic sense) energy flux in the inertial range.
The extension makes the condition powerful enough to lock
down al the scaling exponents {,, as was demonstrated by
Belinicher et al. [70]. As we have shown in a previous pa-
per [39], the problem with extending this argument to two-
dimensiona turbulenceis that the scaling exponents &y, of the
enstrophy cascade are not non-trivial solutionsto the equation
OnFhs1 = 0. Thisshould not surprise us, that we cannot obtain
the scaling exponents of the enstrophy cascade from an “ex-
tended” constant energy flux condition! What must be done
instead is to use the equation

TnOnFrH,]_ - O, (75)

obtained by the generalized balance equations for the vor-
ticity structure functions derived previously in section |1 C.
This equation represents an “extended” constant enstrophy
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flux condition, and it yields two solutions for the scaling
exponents, instead of just one: an energy cascade solution
that transfers energy but not enstrophy (the non-trivial solu-
tion of OpF,11 = 0 and it also satisfies T,0nF1 = O triv-
ialy because it does not transfer enstrophy), and an enstro-
phy cascade solution that transfers enstrophy but not energy
(the non-trivial solution of TrOnFs1 = 0 and it also satisfies
OnFhs1 = O trivially because it transfers no energy). It also
follows from the mathematical structure of the equation (75)
that these two sol utions can be superimposed linearly to obtain
acomposite solution that transfers both energy and enstrophy.
The possibility and implications of such acomposite solution
has been discussed in previous papers [39, 40, 73, 74], and
will not concern us further in this paper.

These observations show that a constructive point of view
isto see our hypotheses 1,2, and 3 as an efficient definition of
the concept of an “inertial range”, in ageneralized sense. Ob-
viously, the hypotheses are valid only on a multidimensional
domain of velocity differencesgeometries {X} € Jn. Theex-
tent of thisdomain 7, is the extent of the inertial range itself.
A one-dimensional interval of length scales where the struc-
ture functions exhibit power law scaling, is areduction of the
domain J,, in which information is lost. For the case of dual
cascade, we have an upscal e range and a downscalerange, and
adifferent set of scaling exponents {, and region Jp, is associ-
ated with each range. To determinethe extent of theregion J
for the energy and enstrophy ranges we employ the theory of
the generalized balance equations, combined with the fusion
rules hypothesis. More rigorously, the domain J , is the range
of length scales where the terms Qp, In, and DyF, in the gen-
eralized balance equation are negligible relative to the terms
contributingto OpFn 1. Thefirst step towards determining the
extent of the domain J,, is to calculate, from our hypotheses,
the scaling exponents of the terms of the balance equations.
Then these terms can be compared against each other. We ini-
tiate this study in the next two sections of this paper. Note
that it is sufficient to study in this manner only the balance
equations for the velocity field. Since the operator T, is a
strictly differential operator, it isalso local, therefore the scal-
ing exponents of the terms of the vorticity balance eguations
are equa to the the scaling exponents of the terms of the ve-
locity balance equations minus 1. So, the scaling exponents
for pairwiseratios of the terns against each other are the same
for both balance equations.

IV. LOCALITY OF THE INTERACTION TERM

We will now show that the p= 2 fusionruleand p=n—-2
fusion rule combined with local homogeneity and incom-
pressibility, implies that the nonlinear interactions in the in-
ertial range are local. From the viewpoint of the generalized
balance equations, the nonlinear interactions are accounted for
by the integral in the term OpF, 1, and the sweeping inter-
actions by the term |5, which we assume, for now, that it is
negligible in the inertial range (see Ref. 47 for further dis-
cussion). We say that the integral is local if it is convergent
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X1 = X9

FIG. 1: The p= 1 fusion rule geometry with atype B fusion. Here
we take the limit r < Rwith r and R both in the inertial range. Ina
type B fusion, the small velicity difference shares an endpoint with
one of the large ones, i.e. X3 = Xo.

R

ol
r

FIG. 2. The p=n—1 fusion rule geometry with a type B fusion.
This is a composite rule where we take the limits / <« Rand r < R
The velocity difference associated with ¢ shares an endpoint with the
velocity difference associated with R.

and furthermore if the dominant contribution to the integrals
in OFy1 comes from the region in which the separation of the

J= /dy Pakﬁ (y)a%xk < L ﬁ Woy (X

=1k

where s can be any point among X1,...,Xn or X'y,...,X'n. The
locality proof requires the scaling of Fy in the limitsy — 0,
Xk—Y — X1 or X', X'k =y — X orx';, and p = [|y|| — . Con-
sequently, we need the fusion rules for the geometries shown
in Fig. 1 (case p=1) and Fig. 2 (case p=n—1). Both
can be derived from the fusion rules for the cases p =2 and
p=n-2.

(a) For the case p = 1 where we aso assume a type 1B
fusion (i,e. X1 = Xp, and see Fig. 1) the governing fusion rule
is

Fn~ (r/R)%R"" (downscale), (78)
Fn ~ (r/R)S~é-2Ré (upscale). (79)

To show this, we note that

W(X2,X'2) = W(X2,X'1) + W(X'1,X'2) (80)
= W(X1,X'1) +W(X'1,X'2). (81)
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integral variabley from all other points has the same order of
magnitude as {X}, ~ R. Locality implies that the contribu-
tions Dyn to OF,, 1 are also self-similar with scaling exponent
On and satisfy

Din(A{X}n,t) = 2% Dia({X}n,t), (76)

where 8, isgiven by & = {n. 1 — 1. We propose that the local -
ity of the interaction integral in Dy, is the mathematical defi-
nition that corresponds most closely to the kind of locality that
is required to enable an eddy cascade with universal scaling.
In the sense of our proposed definition, we will show that both
the energy and enstrophy cascade of two-dimensional turbu-
lence are local.

The proof givenin this section is based on a previous proof
by L'vov and Procacciagiven in section 1V-C of Ref. 43. The
same argument is also presented in the appendix of Ref. 69.
We have generalized their proof in two directions: first, we
derive the explicit conditions needed for locality even for the
case where the fusion rules do not hold; second, we extend the
proof to the case of the inverse energy cascade.

A. Preliminaries

It can be seen from the equations (24), (25), (26), (27), (28)
that the general form of the terms that contribute to Dy, in-
volves an integral of the form

Wg (X — Y, X'k — Y)Wy (X — Y, S)> : (77)

For the last step, we used X1 = Xp. Let Y = (x'1,X'2). Then

Fa({X}n) = Fn(X1,X2, {X}¢_3) (82)
- Fn(xlvxla {X}E=3> + Fn(X]_,Y, {X}E=3) (83)

The third term is the same fusion problem as the first term
because X; and Y share the point X1, and from the universal
isotropy hypothesis we can rotate the legsr and R in Fig. 1
with respect to each other so that the three points form an
isosceles triangle. Then one problem can be obtained from
the other problem by reflection around the triangle’s axis of
symmetry. Consequently, both problems scale according to
the second term, which isa p = 2 fusion. In the proof below,
we will use the generalized scaling

Fry~ (r/R)‘gn-? RCn, (84)
which is applicable both upscale and downscale.

(b) For p=n—1 with type B fusion, we have n— 2 veloc-
ity differences of order r, one velocity difference of order ¢



with one endpoint attached to a velocity difference of order R,
where ¢/ < Rand r « R Note that this fusion can be com-
posed as follows. Begin with all velocity differences at order
R. Thentakethefollowing limits: (¢1) Shrink onevelocity dif-
ference to order ¢ < R with one endpoint attached to another
velocity difference (this is the previous case); (£2) Shrink all
other n— 2 velocity differences down to order r < R. Thus,
we have, for the downscale case,

AT
~ — — Cn
Fr (R) (R) R (85)
~ P52 b2 Rén—bn—2-C2 (86)

The first limit (¢1) gives the first factor (¢/R)%, and the sec-
ond limit (¢2) the second factor (r/R)%-2. Similarly, for the
upscale case, using the exact same limits (¢1) and (¢2) , we
find

AN
~ — — Cn
Fn (R) (R) R (87)
~ gCn_Cn—ZrCn—CZ RCZ‘FCn—Z—Cn. (88)

In the proof below, we will use the generalized scaling

(R e

J:/dy Pak,;(y)éy,xk<[ lﬂl Wy (XI)

=1, £k

and in the limit y — 0 we have the velocity difference ge-
ometry shown in Fig. 3. From the p = 1 fusion rule with
type 1B fusion, the ensemble average in the integral scales
asFni1 ~ (p/R)*+12Rn+1, Theintegral then scales as

jw/ dp pp_zp_lpérH»l,Z N/ dp p€n+1.2_2. (94)
ot ot

Here, the spherical integral contributes the factor p, the pro-
jection operator P, g(y) contributes p ~2, the derivative dy,
contributes p ~1 (because the x dependent factor depends only
on the smallest in separation of the two velocity differences
in Fig. 3, which makes that factor dependent only on p), and
the fusion rule contributes p5”+112. The resulting integral is
marginally local for &n.12 = > = 2 (enstrophy cascade) and
non-local for &ny12 = §o = 2/3 (downscale energy cascadein
3D). However, note that the type 1B fusion rule for the case
p = 1, which we have used here, is written in more detail as:

Fria ~ (Wg (Xk — Y, X)Wy (Xk — ¥, Xk) ) @n-1 (95)
~ q)Z(Xk - ya Xka Xk - y7 Xk)q)n—b (96)
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B. UV locality

UV locality requires convergence in the limits y — 0,
Xk—Y — X or X'|, and X'y —y — X, or X';. Theonly limit that
requires serious consideration is the first where Py g (y) is sin-
gular. For this case we distinguish the following two subcases.

(@) Assume that xx # s. The derivative of the ensemble
average in (77) is analyticin y — 0, so we Taylor expand it
aroundy = 0.

J= /dy Pog (V) [Ap + Bpyyy+Cpysyyys +---].  (90)

Thefirst term vanishes by incompressibility. The second term
vanishes becausetheintegral isodd with respect toy, from the
local isotropy hypothesis, whereas P, 5 (y) is even. Thethird
integral islocal. Use dy = p dp dQ(A) withp = |ly||, A€
S0(2), and dQ(A) the measure of two-dimensional spherical
integration. The third integral then reads

Jo= [ dp [ dRAAPPLp(YCsaYYs  (OD)
~/ dp pp’ZPZN/ dp p ~p?, (92)
o+ o+

and it is unconditionally local
(b) Assume xi = s. Thenthe integral reads

] Wp (Xk -Y, X/k - y)WY(Xk -, Xk)> ) (93)

which alows the integral J to be rewritten as

J~®p_g / dy Py, (¥) dyx P2(Xk — ¥, Xk, Xk — ¥; Xk)- (97)

Here we have used the fact that ®,_1 is independent of both
(xk — Y, Xx) and (xx — Y, X'k — Y), thus independent of x, and
therefore it can be pulled out of the d,x, operator. It is easy
to see that the leading term of the ®, factor vanishes when
differentiated by dyx, by universal incremental homogeneity.
Thus, we get a cancellation that kills the leading contribution
and the integral then scales according to the next-order term:

~ Eni12—-1  Héni12
J /mdpp " pet2. (98)

This integral is local if &ni12 > 0 (i.e. for locality we need
J — 0asp — 0). The result holds unconditionally, even un-
der aregular violation of the p= 2 fusion rule, e.g. Fpi1 ~
(p/R)5+12R+1 aslong as &y 12 > 0 and some factorization
Fri1 ~ ®o®, 1 isstill possible (that would betruefor higher-
order terms, if the leading term should happento vanish) . Un-
der the fusion rules hypothesis this condition is > > 0 for a



downscale cascade and {1 — {n—1 > 0,vn € N—{0,1} for
an upscale cascade.

Consider finally the cases xx —y — X or x|, and X'y —y —
X or X';. We perform the integral spherically around the value
of y where one of these coincidencestake place. Let p bethe
distance between the two approaching points. Assume any
regular fusion rule of theform F 1 ~ (p/R)5+12Rém+1, Now,
the function Py, 5(y) is no longer singular so we gain a fac-
tor of p2. Otherwise, the computation is the same as in the
previous case, and the integral scales as

~ Sni12+l o Héni12t2
9 /mdpp . péniiat?, (99)

which islocal even under aregular violation of the p = 2 fu-
sion rule.

C. IR locality

Consider thelimit p = ||y|| — . The corresponding geom-
etry of velocity differencesis shown in Fig. 4. For the down-
scale cascade we use the fusion rule for the case p=n—1,
defined in Fig. 2:

/ Eni12 R Enrin-1
i (5) (p) P oo

Expanding around the point at infinity p — oo, we get the
asymptotic expansion

Frr ~ an+1*§n+1,2*§n+1,n71 (CO + Clpil + C2P72 4. )
(101)
The integral then scales as

T ~ / dp pp_zp Cn+l—én+l,2—€n+l,n—l(co + Clp_l +--0).
(102)
Here, the spherical integral contributes the factor p, and the
projection operator contributes p 2. In this limit, the deriva-
tive dy x, does not contribute afactor of p ~1, because the only
factor that can be x, dependent is the factor that gives (¢)n+1.2,
This factor is dependent on ¢ and independent of p, again be-
cause ¢ is the smallest distance. On the other hand, the effect
of the derivative dy, is to vanish the @, factor atogether via
an incompressibility cancellation. To see this, note that the
fusion rule corresponding to the geometry of Fig. 4 gives

Fria ~ (W (Xk — Y, X'k = Y)Wy (X — ¥, X'k =) ) @n_1 (103)
~ CDZ(inyvxlkfyaxkfyvxlkiy)q)nflv (104)

and from the incompressibility condition we get the tensor
structure of @, whichis

(n+12 ,

Lol
@2 ~ {(2‘*‘ En+1,2)88y — Ent12 (Zzﬁ (105)

with ¢ = ||xx — Xk||. Theintegral J can be rewritten as

NES q)n—l/ dy Po, 5 (¥) Oy P2(Xk =Y, X'k =¥, Xk — ¥, X'k = Y).
(106)
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Xk
X'y -y
7\/‘
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Xg—Y

FIG. 3: UV limit for the case xx = s. We employ the fusion rule
shown inFig. 1

~p=yl
Xk —Y
v Ble
Xlk_y
f———————
R

FIG. 4: IRlimit ||y|| — e=. Weemploy the fusion rule shown in Fig. 2

Again, ®,,_1 isindependent of x and can be pulled out of the
derivative dyx,. However, differentiating with respect to xy
wiggles only one of two points (that is Xy — Y, but not X' —y),
which makes it, by chain rule, a derivative with respect to ¢,
which in turn vanishes dueto the tensor structure of @, above.
Asaresult, we pick thefactor ¢1p ~* from the next order term,
and the integral scales as:

J~ /‘°° dp PCn+l_€n+1'2_é"+l'”’l_lclp_1 (107)

~ an+1—€n+1,2—5n+1,n71—1_ (108)
The locality condition for this integral is {ni1 — &ni12 —
Eni1n-1 < 0andthus Cny1 < &ny12+ Eni1n-1. For adown-
scale cascade, the fusion rules hypothesis gives the condition
G < 8o+ h1. For an upscale cascade, the fusion rules
hypothesisreads {np = n — {n—p, therefore the condition now
reads {n. 1 > £o+ §n_1. The condition for locality isthe same
asin the downscal e cascade, but the direction of theinequality
isreversed.

D. Summary

Let us now summarize what has been proved. We have
shown that for either a downscale or an upscale cascade the
locality conditions are

(UV): &np12>0,VneN,n>1
(IR): &ni1 < &Enp12+&nrin-1, YNeN,n> 1.

(109)
(110
for UV locality and IR locality correspondingly. For a down-

scale cascade, the IR locality condition is satisfied under the
fusion rules hypothesis

énp:vavpan€N7n>172§ pSn*Za (111)



due to the Holder inequality {n.1 < &+ §n_1 for the scal-
ing exponents {,. For an upscale cascade, the fusion rules
hypothesis gives

Cp=Cr—Cnp, VP,NneEN,N>12<p<n-2, (112
and the IR locality condition is reduced to {n > {2+ &2
which s till satisfied, because the Holder inequality reverses
its direction when the cascade is upscale (see appendix D).
The UV locality condition is also satisfied, but does not re-
quire the fusion rules hypothesis. All that is required is that
the scaling exponent &n, > be positive. For a downscale cas-
cade this gives the condition {, > 0 and for an upscale cas-
cade, the condition {n1 — §y—1 > 0. The assumption of the
regular fusion scaling is sufficient for that, for both upscale
and downscal e cascades.

Let us now consider the case where the fusion rules are vi-
olated according to

Enp = p+ Aénp (downscale),
Enp = &n— Cn—p+ Aénp (upscale).
As we have argued above, as long as the violation is regular,

UV locdliy is still maintained. For IR locality, the sufficient
condition becomes

(113)
(114)

Abny12+A&hi1n-1> 0 (downscale),
Aéni12+Aény1n-1 < 0 (upscale).

(115)
(116)

We see that locality survives even the violation of the fu-
sionrulehypothesisif A&n11.2 and A§n11n—1 @reboth positive
downscale and negative upscale.

V. STABILITY OF THE UPSCALE AND DOWNSCALE
CASCADE

We now turn to the question of statistical stability with re-
spect to forcing perturbations. Statistical stability is defined
as the requirement that there should be a region 7, such that
Qn({X}n) isnegligiblerelative to contributionsto Dyn({X }n)
for al {X}n € Jdn in that region. Even when the forcing
spectrum is confined to a narrow range of scales, it is not
self-evident that this requirement is satisfied, due to feedback
loops of F, onto Qp, (see below).

The first explicit proof that the inertial range of three-
dimensiona turbulence is statistically stable was given by
L'vov and Procacciain section |1-C-3 of [52]. The proof used
the balance equations of the standard structure functions (not
the generalized structure functions used in this paper), and it
covers the case of stability with respect to gaussian forcing
when the scaling exponents ¢, take Kolmogorov scaling val-
ues &n = n/3. The value of this proof has gone by unnoticed
because experiments and numerical simulations have estab-
lished the statistical stability of the three-dimensional energy
range beyond all doubt. For the problem of two-dimensional
turbulence however, where the lack of robustness of the up-
scale and downscale cascades is the unresolved problem, the
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method used by L'vov and Procaccia in that proof is very il-
luminating. The main ideais to estimate the scaling exponent
of the ratio Qn/Dyn and require the appropriate constraint on
that exponent such that the ratio vanishes asymptotically in
theinertial range, in the limit of extending the range.

Consider a geometry of velocity differences {x} , such that
all point to point distances have order of magnitude 1, and
define the scaling exponent g, by

On
Qn(R) = Qn(R{x}n) ~ (K_F:)) . (117)

with R ascalein the inertial range. From locality (proved in
the previous section) we also know that,

R Chy1—1
Din(R) = Din(R{X} ) ~ (€—0> )
It follows that the ratio Qn/Dyn scales as
Qn(R> R On—(Gnr1—1)
Dn(R) (%) ' (19)

In a direct cascade, such as the energy cascade of three-
dimensional turbulence and the enstrophy cascade of two-
dimensiona turbulence, this ratio must vanish in the limit
Lo — +oo. It follows that the condition for the statistical sta
bility of a downscal e cascade reads

Adh=0n— (§r1—1) >0, VneN,n> 1. (120)
In an upscale cascade, such as the inverse energy cascade of
two-dimensional turbulence, the sameratio must vanishin the
limit /o — 0. This leads to the same condition with the in-
equality reversed:

Agh=0n— (§r1—1) <0, VneN,n> 1. (122)

A. Thecase of gaussian forcing

For the simplest case of Gaussian delta-correlated in time
forcing, the exponents g, can be calculated in terms of (.
This makes it possible to investigate statistical stability rigor-
ously.

We begin with the assumption that f,, is a delta-correlated
stationary gaussian field with (f,(x)) = 0, and

(fo(x1,t1) fp (X2, t2)) = 26Cop (X1,X2)8(t1 —t2),  (122)

where € is constant, and C,s is normalized such that
Cua(X,X) = 1. Without loss of generality we may assume
that d f, = 0, and therefore P, 5 f5 = fg. Thus, we have the
identity

/ dy Py(X2 — ¥)Cay(x1,Y) = Cap(x,X2),  (123)

which will be used below.



We define the forcing scale ¢ from the Taylor expansion

S 2
caﬁ(x+y,x):%ﬁ_A§g (”g—{)') +0(65%, (124

valid in the limit ||y|| < ¢o. Note that the odd-order terms
vanish by incremental isotropy. In the limit ||y|| > £o, on the
other hand, we have the asymptotic expansion

lo (0) <)<€o) z}
C ~ A A (e]¥)
ap (X +Y:X) (IIyl) W* AR 2125

Note that a, which is an unspecified scaling exponent depen-
dent on our choice of stochastic forcing, must satisfy a > 0,

Qalaz “On— lﬁ({X}n 1,Y t <[HWak Xk;

with @q (X,t) = fo(X,t) — fo (X
to the generalized balance equations read

Qal Oln— lﬁ({x}n_l,Y t

with Q5 (X, Y) given by

Qaﬁ (XvY) = <WO!(Xat)(Pﬁ (Y’t)> =2¢ /dZ [POW(X - Z) - POW(X, - Z)][Cﬁy(yaz) _Cﬁy(ylaz)]

=2¢ [Cocﬁ (y7 X) - CO!B (y,a X)

The physical intuition is that thereis afeedback loop between
forcing, whose spectrumis defined by Q,5(X,Y), and the re-
sulting behavior of turbulence which is captured by the struc-
ture functionsF,. More specifically, we seethat F,_, provides
feedback to Qn, when the forcing is gaussian. For statistical
stability we need this feedback to be negligible in the inertial
range.

Theimmediate implication of eq. (128) isthat qn = {2+
0z With g, the scaling exponent of Q. It follows that

(Chir—1).

The remaining challenge is to calculate q,. We will see that

AGh = (Gn-2+02) — (131)
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since the correlation must vanish at |ly|| — 4. Also note
that € isthetotal rate of energy injection. In general, the work
done on the fluid is gin(x) = o (X)uy(X). For delta-correlated
forcing, it is easy to show that (gin(X)) = €Cyua(X,X) (S
proof in appendix C).

Recall that the total forcing term Qy, is given by

Qn({X}n,t (126)

)= 3 Qun (X X,
k=1

where Qy, reads

(127)

(Pﬁ(Y,t)>,

,t). For Gaussian forcing, it can be shown (see appendix B) that the forcing contributions Q i,

ZF‘“ AL (X 1) Qe (X1, Y), (128)
(129)
- C(xﬁ (yv Xl) + Cocﬁ (ylv)(,)]' (130)

g2 depends on whether the cascade is upscale or downscale.
In the rest of this section, we will derive the separate stability
conditions for a downscale cascade and for an upscale cas-
cade.

B. Stability conditionsfor downscale cascades

For the case of a downscale cascade, using the Taylor ex-
pansion of Q,z(X,Y) in the limit || X —Y{| — 0O, the scaling
of Qup can be estimated as

Qup(X,Y) = 2€[Cyp(y,X) = Cup(y',X) = Cop(y,X') +Cyp(y',X)] (132)
=2¢ [( aﬁ(yv ) — aB(X X)) — ( aﬁ(y’,x)—Caﬁ(x,x)) ( aﬁ(ya ) aﬁ(x X)) (133)
+(Cop(y'X') = Cop (X', X))] (134)
~ (2e/3)[lly = X[ = [l = %[ = lly = X2+ Iy = X'[[?] ~ e(R/¢0)?, (135)
|
which suggeststhat for adownscalecascade, g, = 2. Itiseasy  stability condition reads
to see that for a monofractal velocity field with {, = nh, the At = (Gr2+42) — (Enst—1) (136)

=3-3h>0,YyneN:n>1 (137)



which requiresh < 1. In amultifractal case one has a linear
combination of independent monofractal contributions, and it
can be shown that the constraint 0 < {3 < 3isasufficient con-
dition for statistical stability. Thisfollowsfrom theinequality

Cni1 < 3+ Gn_2 (see appendix D):

AQn = Cn—z - Cn+1+ 3 (138)
>6h2—Ch2—{3+3 (139)
=3-{3>0,yneN:n> 2. (140)

Forn=2,weget Ay = 02— ({3 — 1) = 3— {3, whichimplies,
from the stability condition Agy > 0, that 0 < {3 < 3isalsoa
necessary condition.

For the case of the downscale energy cascade of three-
dimensional turbulencewe have {3 = 1, which can be derived
from the solvability condition for the homogeneous equation
02F3 =042, 43, 47]. This satisfies the sufficient condition
0 < {3 < 3 for statistical stability very generously, so it is
hardly a surprise that the energy cascade is so robust. Also
worth noting is that for a hypothetical downscale helicity cas-
cade we have {3 = 2, which al so satisfies the stability condi-
tion.

The story changes for the case of the downscale enstrophy
cascade. We know, from combining the Eyink and Falkovich-
Lebedev theories of the two-dimensional enstrophy cascade
[22, 23, 74, 75], that when it exists with constant enstrophy
flux, the enstrophy cascade has no intermittency corrections.
Thus, the scaling exponents §,, all satisfy the monofractal scal-
ing & = n, which impliesthat

AQn=Cn2—Cni1+3=0. (141)

So, we have a borderline situation where the stability condi-
tion is neither satisfied nor broken! Consequently, the actual
stability of the downscale enstrophy cascade is not decided by
scaling exponents but by the numerical coefficientsin front of
Qn and Dy, . Thisiswhereit getsinteresting.

The leading contribution to Qy is proportiona to the to-
tal rate of energy injection €. However, one should bear in
mind that the downscale enstrophy cascade is forced by the
combined effect of both the forcing term f, and the large-
scale dissipation term (—1)™18V~2My,. Asaresult of this
combined forcing, the enstrophy cascade is injected with a
smaller enstrophy rate ny and a very small energy rate ey

Qup(X,Y) = 2€[Cyp(y,X) = Cup(y',X) = Cop (¥, X) +Cop (Y, X)]
Lo
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with gy < 1 and gy < €. If we assume that this combined
effect itself can be modelled as gaussian forcing, then the
leading contribution to the effective forcing on the enstrophy
cascade is proportional only to the rate €, of the sublead-
ing downscale energy flux. Because g,y vanishes rapidly as
the separation of scales in the enstrophy cascade is increased
[36, 40], this leading contribution can be made as small as
desired simply by taking the limit v — 0. For small enough
downscale energy flux ey, the next order term with g, > 3 be-
comes dominant, and combined with {, = nit is easy to show
that the stability condition is now Agp > 0.

The conclusion from this analysisis that the stability of the
downscale enstrophy cascade requires that the accompanying
downscale energy flux should be very small. For that to hap-
pen, we need two things: First, it is necessary to have a dis-
sipation sink at large scales to absorb most of theinjected en-
ergy at the forcing scale or at larger scales. Second, we must
have a large separation of scales between the forcing scale
and the dissipation scale at small scales, which means that a
significant amount of numerical resolution is required. These
two reguirements, we believe, are the reason why it has been
so difficult to reproduce the enstrophy cascade in numerical
simulations. It is worth noting that Tran and Bowman [21]
cameto asimilar conclusion by a different argument, that the
robustness of the downscal e enstrophy cascade requiresavan-
ishing downscale energy flux.

C. Stability conditionsfor upscale cascades

The fundamenta difference between an upscale cascade
and a downscal e cascade with respect to stability isthat in the
upscale cascade the Holder inequalities now take the form
Cnik > &n+ &k, and the condition for statistical stability reads
Agn < 0, Vn> 1. We will now prove that inverse cascades
are aways statistically stable with respect to variationsin the
forcing statistics, provided that {3 > 1. This is consistent
with the numerical evidence that the inverse energy cascade
is much easier to obtain in simulations than the direct enstro-
phy cascade.

Again, using Taylor expansion in the limit || X — Y || — oo,
we seethat Q.5 scalesas

~2[(72%) - (7

which gives g = —a < 0. For a monofractal velocity field

(142)
a a a
%) ()|
N ) | , (143)
—XI) <||y—><’|| Iy =x||
|
with £, = nh, the stability condition reads
AQn = 0n— ($ni1—1) (144)
=Q+Gh-2—(Ch1—1) (145)
=@+1-3h<0,¥neN:n>1 (146)



Since gy < 0, the condition h > 1/3 is sufficient. For the
more general multifractal case, using the inequality {n.1 >
{3+ &nh—2, we can upper-bound Aq, asfollows:

AQh = G2+ -2~ (Eny1—1) (147)
<OQ+1—(Ch2+83)+Ch2 (148)
=gu+1-{3,VneN:n>2 (149)

For n = 2, we get an equality: Aqx = 02— ({3—1). Thus,

the stability condition Agn < O is satisfied when {3 > g2 +
1, which is indeed satisfied when g < 0 and {3 > 1. For
theinverse energy cascade of two-dimensional turbulence, we
have {3 = 1 which satisfies the requirementsfor stability.

There is however another effect that can destabilize the in-
verse energy cascade. We have shown in aprevious paper [47]
that the loss of asymptotic homogeneity by the effect of the
boundary conditions on the flow amplifies the sweeping term
In at the large scales. As aresult, at sufficiently large length
scales, theratio I,/ Dy, becomes significant, and excites a par-
ticular solution superimposed on top of the homogeneous so-
[ution associated with the inverse cascade. The particular so-
lution corresponds to the coherent structures associated with
the “energy condensation effect”. The formation of these co-
herent structures is very likely to further intensify the ratio
In/Din- Aswe have explained in the introduction, it has been
shown that if these coherent vortices are removed before the
evaluation of the energy spectrum, the usual inverse energy
cascade spectrum isrecovered[30, 32, 34]. Thisresult is con-
sistent with our theory, and it confirms that the homogeneous
solution, corresponding to the inverse energy cascade, exists
side by side with the particular solution, corresponding to the
coherent structures, even when the particular solution is dom-
inant. The possible role of the sweeping term on the stability
of the enstrophy cascade is currently not well-understood.

VI. CONCLUSION AND DISCUSSION

We have shown that the non-perturbative locality of thein-
ertial ranges of two-dimensiona turbulence is an immediate
conseguence of the fusion rules hypothesis. The physical in-
terpretation of what we have done is to prove, strictly in the
context of the incompressible Navier-Stokes equation, that
universality implies locality. A proof of the fusion rules by
diagrammatic theory is essentially the converse and more in-
teresting claim: that locality implies universality. This result
leads to an apparently curious paradox: the usual understand-
ing of locality, in terms of triad interactions in Fourier space,
suggests that a necessary condition for locality is that the en-
ergy spectrum E(k) must have slope between k=2 and k2.
This corresponds to the inequality 0 < {, < 2. The paradox
is that this constraint does not appear anywhere in our local-
ity proof! In recent work, Eyink [76] investigated the locality
of the downscale enstrophy cascade and the inverse energy
cascade using a filtering method [77—79]. His argument also
leads to the inequality 0 < {, < 2 as a sufficient locality con-
dition. It follows that whereas the inverse energy cascade is
local the direct enstrophy cascade is IR marginally-nonlocal.
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Unlike the argument in this paper, Eyink’s argument has only
considered the kinematic locality of the flux term and not the
statistical locality associated with unfused higher-order struc-
ture functions. On the other hand, our argument is less rigor-
ousin its present form, as it assumes the fusion rules without
proof.

A fundamental problem with establishing locality in
Fourier space is that the Fourier transform involves an inte-
gral that ranges over every length scale, including the forcing
length scales and the dissipation length scales. To preserve
locality, the main contribution to the integral must come from
theinertial range. Theinequality 0 < {» < 2 comesinasanec-
essary condition for the survival of locality under the Fourier
integral [64]. The same issue arises when locality is charac-
terized with a filtering transform (i.e. forward Fourier, trun-
cation, backward Fourier), as was done by Eyink [76], abeit
with a broader definition of filtering. Beyond that, the under-
lying argument based on diagrammatic theory [50-52] that
justifies the fusion rules hypothesis itself can impose further
constraintson §», which still need to beinvestigated carefully.
For example, one other way the constraint 0 < {> < 2 can
come in is if we require perturbative locality for each Feyn-
man diagram [50]. Perturbative locality may be a necessary
condition for the fusion rules hypothesis. If that is true, then
perhaps 0 < §> < 2 isimplicitly assumed when we postulate
the fusion rules hypothesis. We have also shown in this paper
that the related condition 0 < {3 < 3 is required for stability
under Gaussian forcing, which is as essential as locality for
the existence of a universal inertial range.

It should be stressed that any constraints on scaling ex-
ponents needed only to prove the fusion rules hypothesis by
Feynman diagrams , are needed only to establish the univer-
sality of the scaling exponents ¢, of the inertial range. We
should expect to find that the conditions for locality itself are
weaker. For example, we have shown in this paper that local-
ity is possible even when the fusion rules fail, provided that
the fusion exponents &np deviate in the correct direction. In
fact, it is possible to have local interactions, as per our def-
inition, even when the underlying diagrammatic theory does
not yield local Feynman diagrams! This scenario is not en-
tirely hypothetical; in the case studied by Ref.80 of an en-
strophy range under strong Ekman dissipation, this may be
precisely what happens, with the slope being steeper than k —3
and non-universal, but still allowing an appearently local en-
strophy cascade to exist.

Thekey ideathat can help us unravel these paradoxesisthat
the non-perturbative locality studied in this paper is a weaker
condition than perturbative locality. Non-perturbativelocality
requires only the combined effect of all Feynman diagramsto
belocal. Perturbativelocality, on the other hand, requires that
each diagram individually should be local. This distinction
between perturbative and non-perturbative locality may clar-
ify the paradoxical situation with the enstrophy cascade where
the spectrum of the enstrophy cascade is consistent with a di-
mensional analysis argument based on a locality assumption
even though the slope is too steep to be self-consistent with
that assumption! Adding alogarithmic correction resolvesthe
situation in a one-loop closure model [81], and the combina-



tion of more recent results by Falkovich and Lebedev [23] and
Eyink [75] suggest that the same logarithmic correction per-
sists for the exact theory, with no higher-order adjustments.
Nevertheless, a reconcilliation of the spectrum slope and the
locality requirement is till an “uncomfortable” notion, to say
the least. We believe that a possible resolution of this para-
dox isto claim that the enstrophy cascade is local in the non-
perturbative sense, as far as the exact theory is concerned, and
borderline non-local only in the perturbative sense. From a
physical standpoint the relevant locality needed as a precon-
dition for establishing the existence of an inertial rangeis the
non-perturbative locality. However, some confusion can arise
from the fact that closure models unwittingly exchange non-
perturbative locality with perturbative locality!

The careful reader will note that the non-perturbative lo-
cality is aso weaker than the more intuitive (and less rigor-
ous) physical understanding of locality as the notion that the
effect of the forcing range and dissipation range is “forgot-
en” in the inertial range. We may designate locality, in this
sense, as “strong” locality, so that it can be distinguished from
the weaker non-perturbative statistical locality. The proposed
theory can help make the meaning of this notion of “strong”
locality more rigorous. The key idea is that it is possible
to have local interaction integrals in the contributions to the
OnFn.1 term of the balance equations and still pick up an ef-
fect from the forcing range or the dissipation range into the
multi-dimensional regions J,, that are supposed to be the in-
ertial range, in our generalized sense. It all depends on how
much forcing and dissipation “wish to creep into” the inertial
range. We can find that out by comparing the magnitude of
the Qn , Iy, and Dk, terms of the generalized balance equa-
tions against the magnitude of the contributions Dy, to the
interaction term. Thus, we find that there are three distinct
conditions that need to hold to have strong locality: first, the
interaction integral itself has to be local; second, we need to
establish the property of statistical stability which will guar-
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antee that the forcing effect Q, and the sweeping interactions
In do not creep into the inertia range; third, a calculation of
the shape of the dissipation range can show whether there is
a wide enough region J,, in which the dissipation term D, F,
is negligible. One advantage of the generalized balance equa-
tionsframework is that it allows us to account mathematically
for these three distinct effects separately.

In this paper, we examined only the first condition and part
of the second condition. We have shown that statistical sta-
bility with respect to forcing applies unconditionally for the
inverse energy cascade. For the enstrophy cascade, statisti-
cal stability requires large-scale dissipation and a vanishing
downscale energy dissipation. For any downscale cascade in
general, stability constrains the corresponding Holder expo-
nent as h < 1. For an upscal e cascade, the corresponding con-
straintish > 1/3. We began considering the role of sweeping
in a previous paper [47], and the role of the dissipation term
will be studied in future work.

Acknowledgments

It is a pleasure to thank Ka-Kit Tung for his advice and
encouragement. The research is supported in part by the Na-
tional Science Foundation, under grant DM S-03-27658.

APPENDIX A: DERIVATION OF THE BALANCE
EQUATIONS

In this appendix we give a detailed derivation of the gener-
alized balance equations. Recall that we defined the general-
ized structure function F, as

> . (AD

Fn({X}n,t) = < Lf[lwak(xk,t)

By differentiating F, with respect tot and substituting the Navier-Stokes equations we obtain:

OF(t Wy, (Xic, X'k, n ”
5t( ) Z <ak87kk [ [T we (0.0t D 2. [~Nin + Qun] + vIn + BHn. (A2)
=1 I=1,£k k=1
Here, theterms vJ, and BHy, are the contributions of the small-scale and large-scale sinks with
n
Jaee o ({xxXdnt) = 3 (VA + VEDFa({XX 0 ) (A3)
k=1
n
Hr?laz"'a”({x,x/}n,t) _ 2(V;k2m+V;fm)Fn({ny/}nvt)ﬂ (A4)
k=1

where V)Z(k isthe Laplacian with respect to x; V)Z(,k is the Laplacian with respect to x'y. Also, Ny, represents the contributions of
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Papdy(uguy), and Qu, represents the contributions of P, f, and they read:

- -
Quio2n({x, X }n,t) _< IT Wey (1, X1,8) | Poyp (5 (Xit) — fﬁ(x’k,t))>, (A5)
[I=1i7k ]
- -
alaz an({x X }I’h - < H WO!| (X| 7XI| at) Takﬁ [87~,Xk(uﬁ,xku%xk) - 8y,x’k(uﬁ,x’kuy,x’k)]> (A6)
[1=1i#k ]
- :
= < IT we (x1,X1,t) | P sNp (kax'k,t)> (A7)
[1=1i#k ]
- :
= < IT we (. X0t /dypockﬁ (Y)Ng (XkYaX/kyat)>~ (A8)
=Lk ]

Here we use the abbreviations Uy x, = Uq (Xk,t) @nd Uy, = Ug (X', ), We k = We (Xk, X'k, t), @nd dg x, iSthe spatial derivative
in the o direction with respect to xx. Also, Ng (Xk,X'k,t) isthe non-linear factor defined as:

Ng (X, X'k, 1) = a%xk(uﬁyxku%xk) - 87«,X/k(uﬁvxlku7exlk) = U%ng%xk(uﬁyxk - uﬁvxlk) + U%X/kg%xlk(uﬁyxk - uﬁvxlk)
= a}’yxk(u%kaﬁ,k) + ay,x’k(u%x’kwﬁ,k) = U%Xka%kaﬁ,k + U%X/ka}'yx'kwﬁ,k'

Itis easy to see that the nonlinear terms Ny, cannot be writ- believeit isappropriateto retain it herein its simplified form.
ten exclusively in terms of velocity differences. The remark- To isolate the sweeping term, we define a generalized mean
able characteristic of the derivation of the balance equations velocity Uy ({2,Z }n,t) as
by L'vov and Procaccia [43] is that the nonlinear term Ny, is
rearranged as the sum of alocal term D, and a sweeping term 10
|k Such that the local term can be expressed as a linear oper- Uo({z,Z}nt) = o, 2 Ug (Zk,t) +Ua(Z:t)),  (A9)
ator on Fn,1. Although L'vov and Procaccia [43] eliminated k=1
the sweeping term on the grounds of global homogeneity, we

and the corresponding velocity fluctuation
1 n
Va(%,{2,Z}n,t) = Ug(X,t) — U ({Z,Z }n,t) = 2— 2 Wi (X, Zk) + W (X, Zk)].- (A10)

We may then decompose N (Xk, X'k, t), in general, to
Na (kaxlkvt) = 806 (Xk; Xlka {Zv Zl}nvt) + L(X(kaxlka {Zv Zl}nvt)a (All)
where 8, and L, are defined as:

Sa(xka Xlkv {Za Z,}nat) - uﬁ ({Za Z,}nat)(aﬁ,xk + aﬁ,x’k>W0€ (Xka Xlkvt)a

/ / / ! / ! (Alz)
La(Xk,X ks {Z’ z }nat) - [VB (Xka {sz }nat)aﬁ,xk +VB (X S {Z’ z }nﬂt)aﬁ,x’k]Wa(kax kat)'
In general, {z,Z'}, can be chosen any way we wish. Here, we specifically use the choice:
Nﬁ (Xk,X/k,t) = Lﬁ (Xka X/kv {va/}nat) + 8/3 (kax/ka {Xa X/}nvt)' (A13)

This gives the decomposition Ny, = Dy, + lxn With

112k
n

D{a“ " ({x. X'} 1) —<L IT wa % ] / dypmy)&ﬁ(xk—y,x/k—y,{x7x’}mt>>, (r14)
> (A15)

hen 2" ({%, X }n, 1) <[ IT we X|,X/|,t)] /dyPakﬁ(y)Sﬁ(Xk—y7X/k—y,{X7X/}nvt)
|=

112k
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Here I, represents the sweeping interactions and Dy, representsthe local interactions.
The sweeping term Iy, can be simplified as follows: We use the decomposition P, (X) = 6,50 (X) — PHﬁ( ) to split Iy to

two terms: Iy, = I&? + Ié? with ||§,? corresponding to 6,46 (x) and |§n corresponding to P! wp(X). We also use T‘(‘Xﬁ ug =0. The

integral inside the ensemble average of 1, splitsto two parts: 1, and 1. Thefirst part 14 reads:

Iy = /dy s O(Y)85 Xk — ¥, X'k = ¥, {X, X}, t) = S (%, X'k {X, X}, 1) (Al6)
= Uy ({%, X"}, 1) (Fyxyc + Pty )Wy (X, X'k ). (A17)
The second part 1, is shown to be zero by incompressibility:
l2= [ dyPLy ()8 (XY Xic— Y. (XX hnst) (A19
— [ YRl (U (0 b ) B+ Dy W (= Yo = Y1) (A19
= Uy ({X,X'}n, 1) (Fy ¢ + Py, ) /dyPlﬁ (y)wp (xk —y, Xk —y,t) =0. (A20)

Because P(‘l 8 isthe nonlocal part of the projection operator, this result implies that the pressure effect does not contribute to the
sweeping interactions or to the violation of incremental homogeneity. Thus, | x, is determined by |, and it simplifiesto

n

@27 ({x,X }n,t) = < L l_I[;ékwal XX 1) | U ({X,X st (8%Xk+(9%X/k)wak(xk,x’k,t)> (A21)
=1,

= (dyx +9yxy) <uy {%,X}n,t) ll_lw(xI X1, X', t 1> (A22)

This result was given previously by L'vov and Procacciain section 1V-B and appendix B of Ref.43.
We will now show that the local interaction term Dy, can be written as alinear transformation of Fy 1. First, note that

LOC(Xk; X/ka {Xa X/}nat) = [Vﬁ (Xka {Xa X/}n;t)gﬁ,xk + Vﬁ (X/ka {Xa X/}n;t)gﬁ,x/k]wa (Xk,X/k,t) (A23)
= 0 x [VB (X 1%, X Fn, )W (Xie, X', )] 4 9 s, [V (X kr £, X T, )Wy (X, X'k, )] (A24)

1 n
=on l;aﬁjxk[(wﬁ (X, X1, 1) +Wg (Xie, X1, 1) )Wer (X, X'k, )] (A25)

1 n
+ % Izlaﬁ,xlk[(wﬁ (X,ka X ﬂt) + WB (Xlkvxll ,t))Wa (kaxlkat)]a (A26)
which gives:

La(xkfyax/k Y, {X X}na Zaﬁ Xk Wﬁ( yaxht)+W[3(Xk7yvx/|7t))Wa(Xk7an/k7y7t)} (A27)

1
+ % Z aﬁ,x’k[(wﬁ (X,k =Y, X 7t) + Wﬁ (X,k -y, Xll ,t))Wa (Xk - yvxlk - yat)] (A28)

=1

It follows from substituting the above to (A14) that D, is given by

Dia”® " ({x,X}n, 1) 2 / AP (V)Djr ™ ({x, X bn,y.1), (A29)
With Dy = Dyni1 + Dini2 + Diniz + D4, and

Dg&l'gl:akilﬁawrlman({xaXl}nvyvt) = aarprl,xkF&i'akilﬁakJrlmanJrl({Xm}mzlv 7y7X,k7ya{Xm}lr']n=k+17Xk7an|>a (ASO)

Fo “Ok—1B 0Ky 1 0Nt 1

Dgrilgakilﬁabrlman({xaXl}nvyv ) aarH,l,Xk n+1 ({Xm}mzlv *y,X,k*y,{Xm}ﬂ]:k_'_l,Xk*y,Xq), (A31)
Dgﬁl'éakilﬁawrlman ({Xa X/}m y7 ) an+1,X’k Frﬁ:]_ e 1ﬁak+l e ({X }m:17 - y7 X/k - ya {Xm}ﬂjzk+17 X/k - y7 X] )7 (A32)
Dgr:h-z‘l-akilﬁak#rlman ({X? X/}m y7 ) ocn+1,x kFl’?ﬁl akilﬁak+l.-‘an+l ({Xm m=17 - y7 X/k - y’ {Xm}ﬂlzk+17 X/k - y7 X/| ) (A33)

APPENDIX B: FORCING CONTRIBUTION FOR GAUSSIAN explait the following mathematical result: if fo(X1,t1) isa
FORCING

We give here a proof of equations (128) and (130), closely
following the argument in section 11-C-3 of Ref. 52. We
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Gaussian stochastic field, the ensemble averages of the form R[f] by the following integral
(fa(X1,t1)R[f]) can be evaluated for any analytic functional

OR[f] >
fa(X1,t1)R /dxdt o(X1,t1) f5 (X2, t <7 B1
(fa(xa,t1) 2dt; 1,11) fg (X2, 12)) 575 (2,2) (B1)
We begin the proof by defining the following response functions
. o 5Wa(xatl>

9ocﬁ (thluyth) - < 5fﬁ (y7t2) ) (BZ)
90{1 -amP1-Pn X 7t’ T W, )(7 . B3
({ }m {y } H Sfﬁk yk,Tk ];!- o) | ( )

For the caset; =t, =t, the response function G5 (X,t;y,t) is given by
Sap (X, t3y,t) = (1/2)[Pop(X —y) = Pup(X = y)]. (B4)

Thisis proved in appendix C. Likewise, for the case m= 1 and 7, = t, the response function %" ({X},t,y,t) is given by

o--omPB _ L OWoy (X, 1)
9 ({X}natvyvt) - <6fﬁ [Hwa| X|7 ] > - kg!l_< [I:Q#kwal (let)] Sfﬁ (y7t) > (BS)

— 2 Rty Lo () Gy p (X 1Y ). (B6)
k=1
Here we exploit the fact, first pointed out in Ref. 52, that the variational derivative (6W o, (Xk,t))/( fg(y,t)) is not correlated
with the velocity differenceswy, (X|,t) because no timeis being allowed for interaction to develop a correlation. Using (B1) the
correlation between w, (X) and fg(y) is given by

welX) ) = [z [ e (D) (130.0)12.0) = 2¢ [ s X 625,012, ®7

and it follows that
Qup(X.Y) = 2¢ [ d2Guy(X.t:2.0)(Cpy(y.2) ~Cpyy'.2) (B9
= 2¢ [ d2lPuy(x—2) ~ PuylX ~ 2)][Cpy(y,2) — Cyyly/ 2] (89)

Using asimilar argument for the more general case, we get

<[HWO" Xt 1 ot > /dz/df <5fyz 7) LHlWaI Xt 1><fﬁ(y7 )fy(z,7)) (B10)

= 2¢ a2 ({X)n-1,20C,y.2), (B11)
(B12)
and it follows that
Q1P (X}, 1,Y 1) = <l1‘[wa| Xi,t) | (fa(y,t) — fﬁ(y’,t))> (B13)
=2¢ / dz §34 " ({X}n-1,2)[Cpy (¥, 2) — Cpy Y, 2)] (B14)
—2¢ 2 Foa @1t nal ) / dz Se,7(X1,1;2,1)[Cpy (Y, 2) — Cpy (Y, 2)] (B15)
=1

n-1
= lz Ry I (X 1) Qg (X1, Y). (B16)
=1



This concludes the proof.

APPENDIX C: EVALUATION OF THE ONE-TIME
RESPONSE FUNCTION

We show how to calculate the one-time response function
and use it to show that the ensemble average of the rate of
energy injection gin(X) isgiven by (gin(X)) = €Cpa (X,X). This
argument was given previously by McComb [82].

We begin with the definition of the response function:

6ua(xl,t1)>
Gy (X1t Xo, b)) = ( S LI Cc1
Otﬁ( 1,11, A2 2) <5fﬁ(X2,t2) ( )

t
U (1) = U (X, 0) + /O dsAq[Ua(9)]
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We first show that at equal timest; = tp, G, is given by

1
GaB (Xl,tl;Xz,tl) = épaﬁ (X17X2). (C2

To show this, note that from linearity with respect to forcing

0+ [[ds [y Paplx—y)tuly.9) &

where A [Ux(S)](r) represents the effect of the advection and pressure term. For convenience, we use the abbreviation g o =

Pop fo- It followsthat

SUg(xp,t1) [t 8 Aa[Ua(S)](x1) 8 a _

5Ty (0 t2) /O ds 515 00t2) + 57,00, /0 ds / dy Pop (X —Y) fg(y.s) (C4)
_ [t S A[Ua(s)](r) s = B B
=, S5 et e / dy /O dit[H (ty — )Py (X1 — y)] T4 (y,1) (C5)
_ 6Ag[ua(9)](r)
= . dSW”FH(tl*tZ)PaB(Xl*XZ)' (Co6)

with H(t) the Heaviside function, defined as the integral of a
delta function:

1, ifte(0,+o)

H(t):/tS(r) dr{ 1/2, ift=0 . (©n
0 0, ifte(—,0)

For t; = tp, theintegral of the first term vanishes and H(0) =
1/2, thereforeit follows that

1
G(xﬁ (Xl,tl;Xz,tl) = Epaﬁ (X17X2). (C8)

Also note that in fact there is a discontinuity in the response
function and

At'L”(L G (X1,T + At; Xp,t) = Pyg (X1 — X2). (C9)

From thisresult, it immediately follows that:

(€n(X)) = / dxo / dto (o (x.t) 5 (x0,10))

:/dXO ZSCaﬁ(X7XO)G(Xﬁ(Xat;X05t)

(C10)
(C11)

= /dxo €Cyp (X, X0)Pyp (X — Xo) = €Cpa (X, X).
(C12)

APPENDIX D: SCALING EXPONENT INEQUALITIES

We will show here that for an downscale and upscale cas-
cade, correspondingly, the scaling exponents satisfy the in-
equalities

Gk < &n+ i« (downscale),
Sk > Gn+ Gk (upscale).

(D1)
(D2)

The first of these inequalities is well-known. The key result
here is the second inequality, corresponding to the case of an
upscal e cascade, whose direction reverses, thus giving a con-
vex upward (or flat) dependence of £, asafunction of n. This
should be contrasted with the case of a downscale cascade
where the dependenceof £, on nisconvex downward (or flat).
The proof is “folklore” and it uses the Schwarz and Holder
inequalities. An earlier version of this argument was given by
Frisch [63, 64], who in turn cites Feller [83].

Let p,ge (1,4) with1l/p+1/g=1,andlet ¢,y betwo
random variableswith ¢ > Oand y > 0. The Holder inequal-
ity for ensemble averages states that (¢ y) < (¢ P)Y/P (yd)¥/9,
For p=q = 1/2 it reduces to the Schwarz inequality:
(ow)? < (02) (v?).

We begin by defining w(R) as the absolute value of the lon-



gitudinal velocity difference:

W(R) = |(u(x+Re,t) —u(x,t)) €], (D3)
wherex € RYisgivenand eisaunit vector. The proof is based
on the following two assumptions: (&) For a downscale cas-
cade, inthelimit £o — oo, w(R) scalesas ([wW(R)]") ~ (R/£g)%".
For an upscale cascade, the same scaling law holds for the
limit £o — 0. (b) For finite ¢o thereis arange of scales where
the above scaling law continues to hold as an intermediate
asymptotic

The proof uses two “helper” inequalities that are interest-
ing in themselves. Thefirst “helper” inequality is deduced by
choosing ¢ = [W(R)]™Y/2 and v = [w(R)]"1/2 and em-
ploying the Schwarz inequality. It follows that

(WRIM? = (99)* < (%) (v?) (D4)
= (WRI™ M) (WRI™),  (DS)
and therefore
<[W(R)]n>2 R 260 —Cn-1—Gn1
<[W<R>]“1><[w(R)]“+1>N<€_o> <1 (D6)

To satisfy this inequality under the limit £o — o we require
280 — 81— Cni1 > 0. Thuswe get for a downscale cascade:

(D7)

Likewise, for an upscale cascade, the inequality must be satis-
fiedin thelimit /g — 0T, which requires 2{n — {h—1 — {hi1 <
0. Thus, for an upscale cascade we have

Chi1— &n < &n— &1 (downscale).

Cni1— &h > G — $n—1 (upscale). (D8)
The second “helper” inequality is deduced by choosing

¢ = [W(R)|" and v = [w(R)]® = 1 and employing the Holder

inequality with p= (n+1)/nand g=n+ 1. It follows that

/(n+1) <wn+1>1/(n+1)

(WR)" < (o™ 0/m)
= <[W(R)]n+1>n/(n+1),

(D9)

(D10)
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which implies that

<[W(R)]n> E Cn—(n/(”+1))gn+1<1 (D11)
([W(R)]”*l)n/(nﬂ) fo '
By similar reasoning, we find that
1 < n (downscale), D12
"1, (downscale (012)
n+1
Cn+1 2 ———=Cn (upscale). (D13)

Now let us consider the case of a downscale cascade. We
assume with no loss of generality that n > k (otherwisefor the
following step, one may exchange n and k). Combining the
inequalities (D7) and (D12) gives

Crik— b= ”anl@aﬂ ~G) <kbei-G)  (D14)
k(&) =l @15

Thus we establish that
ook < G G (cownscale). (D16

For the case of the upscale cascade, the exact same argument,
with every inequality reversed, gives

Cnik > Gn+ Gk (upscale). (D17)
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