LINEAR SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

ELEFTHERIOS GKIOULEKAS

The purpose of this handout is to summarize the theory of the matrix expo-
nential. You may note that this is a different approach from the one proposed in
your textbook. The main motivation for preferring the matrix exponential is that
it provides a unified theory that can solve all problems, including all forced prob-
lems. For examples, see Bronson [1]. A detailed exposition of the theory is given
by Apostol [2].

We want to solve a linear system of ordinary differential equations of the form

dz,

n
1 = A
( ) dt bzzg abTp + fba

where fj is a known forcing function, and A = [A,3] is a matrix of constant coef-
ficients. The essential result of the matrix exponentials theory is that the solution
is given by

(2) x(t) = exp(tA)x(0) + exp(tA) /0 exp(—sA)E(s),

where x(0) is the initial condition, which we know. The first term represents the
homogeneous solution, whereas the second term represents the particular solution.
The matrix exponential is given by

A AT
(3) e™ =exp(A) = Z o

n=0

Note that this is a generalization of the Taylor series expansion of the standard
exponential function. Naturally, e® is a n X n matrix. The problem at hand is to
evaluate the matrix exponential without having to evaluate an infinite sum, which
is not practical.

1. EIGENVALUES AND EIGENVECTORS

The evaluation of the matrix exponential requires the use of the concept of eigen-
values and eigenvectors. We say that a matrix A has eigenvalue A with eigenvector
v, if the equation Av = Av is satisfied. To find the eigenvalues, you solve the
following equation

(4) det(A — AI) = 0.

Then, you substitute the numbers that you find to Av = Av and solve that to find
the corresponding eigenvector.

The geometric interpretation is that the eigenvector represents a direction such
that any vector that points towards that direction (or in the opposite direction)
will not be rotated when you apply the matrix on it. It will only stretch or shrink,
and the corresponding eigenvalue will tell you how much. If all the eigenvalues are
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distinct, then you’re dealing with a very nice matrix, because you will also have
corresponding eigenvectors that are orthogonal to each other. This means that
every other vector can be decomposed as

n
(5) X = Z CaVa,
a=1

where the numbers ¢, are the coordinates of the vector x using the eigenvectors v,
of the matrix A as a frame of reference. It follows that when you apply the matrix
to an arbitrary vector, all that happens is that you’re multiplying its coordinates
with certain constant numbers, the eigenvalues A, , regardless of who this vector is.
This only holds however if you use the eigenvectors to define the coordinate system.
Furthermore, this may fail if you have repeated eigenvalues.

2. MATRIX EXPONENTIAL

The most convenient technique for evaluating the matrix exponential was in-
vented by Putzer. It is based on the following two claims. First, there will always
exist numbers a; such that the matrix exponential e can be written as a finite
sum given by

n—1
(6) et = arAF.
k=0

These numbers can be calculated by using the following claim: Suppose that we
define a polynomial given by

(7) p(z) = z_: apzh.
k=0

Then, suppose that you know all the eigenvalues of the matrix A. Then, for each
eigenvalue A you may obtain one equation as follows.

A simple eigenvalue => e* = p()\)
(8) A double eigenvalue = e* = p(\) = p’()\)
A triple eigenvalue => e* = p(\) = p'(\) = p"'(N)

etc. Solving these equations together as a system, will give you the numbers a.

This is a straightforward calculation that always works. However, that doesn’t
mean that you will always have to do it. In certain cases, we can work it out in
general and derive special results that will allow you to circumvent the need to
solve the system of linear equations.

For example, if your matrix is nice enough to have n distinct eigenvalues, then
the matrix exponential can be calculated from the following expressions.

n
exp(tA) = Z MLy,
k=1

9)
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This result by itself covers most circumstances.
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Most useful is the 2x 2 case. In this case, we distinguish between two possibilities:
that the eigenvalues are distinct, or that they are equal. Suppose that you have
found the eigenvalues, and they are A1, As. Then, if A\; = Ay = X then

(10) exp(tA) = eM(I+t(A — AI))

If Al 75 A2 then
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This result is sufficient to solve all 2 x 2 problems. Keep in mind, that when you
know the matrix exponential, that allows you to write down solutions for any kind
of forcing functions.

exp(tA) =
(11)

3. THE EIGENVECTOR METHOD

Now let us consider the method used by the textbook. This method is expedient
only when all the eigenvalues are distinct and you do not have forcing in your
problem. It is also conceptually interesting.

Suppose that v is an eigenvector of the matrix A with eigenvalue \. What
happens if you apply the matrix e** on the eigenvector v instead? Using the
definition of the matrix exponential, you may show that

(12) exp(tA)v = eMv.

Suppose that you want to solve the unforced problem

(13) dxa Z AgpTp-

The key is to write the initial condition as a linear combination of the eigenvectors

(14) x(0) = anva.

Using this, we may calculate the solution as follows:

x(t) = exp(tA)x(0) = exp(tA) Z CaVq

a=1

—anexp (tA)v anexp)\t

What you get is the method of the textbook. D1d you see how the matrix exponen-
tial disappeared? The idea is that if you don’t have forcing, and if the eigenvalues
are distinct, then you can circumvent the computation of the matrix exponential
by evaluating the eigenvectors instead, which is an easier computation.

Don’t forget that it is easy to diagnose whether your solutions are correct by
substituting them back to the original equations.

(15)
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