Lecture Notes on Math for Electrical Engineers

Eleftherios Gkioulekas

Copyright ©2009 Eleftherios Gkioulekas. All rights reserved.

This document is the intellectual property of Dr. Eleftherios Gkioulekas and is made available under the Creative Commons License CC BY-SA 4.0:

https://creativecommons.org/licenses/by-sa/4.0/

This is a human-readable summary of (and not a substitute for) the license:

https://creativecommons.org/licenses/by-sa/4.0/legalcode

You are free to:

- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms:

- Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

No additional restrictions – You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. **Notices:**

- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

These notes are constantly updated by the author. If you have not obtained this file from the author's website, it may be out of date. This notice includes the date of latest update to this file. If you are using these notes for a course, I would be very pleased to hear from you, in order to document for my University the impact of this work.

The main online lecture notes website is: https://faculty.utrgv.edu/eleftherios.gkioulekas/

You may contact the author at: drlf@hushmail.com

Last updated: March 22, 2021

Contents

1 MEE1: Brief introduction to Logic and Sets	2
2 MEE2: Basic Linear Algebra	13
3 MEE3: Determinants and Linear Systems	40
4 MEE4: Graph Theory. Part 1	81
5 MEE5: Eigenvalues and eigenvectors	140
6 MEE6: Graph Theory. Part 2	171
7 MEE7: Applications of linear systems	237
8 Programming with Matlab	259
9 Algorithms with Matlab	280
10More on linear ODE systems	297

MEE1: Brief introduction to Logic and Sets

BRIEF INTRODUCTION TO LOGIC AND SETS

V Basic concepts

The basic concepts we wish to introduce informally are a) Propositions

- b) Sets
- c) Predicales Quantified statements.

Propositions

• A proposition p is any statement which is frue or false.

- · Given two propositions p,q we define the following composite propositions.
- 1) Conjunction plag: "p is true and q is true" True if both p and q are true, otherwise false.
- 2) Disjunction: pVg : "p is true or q is true (or both)"
 True if at least one of the two statements p or q is true, otherwise false.
- 3) Negation p: "p is <u>not</u> frue" ► True if p is false. False if p is true.
- 4) Exclusive Disjunction plq : "<u>either por q</u> is true (not bots)"
 ▶ True if either por q but not both is true.
 Otherwise folse.

5) Implication p=>q: "If p is true then q is true" True if the truth of p implies the truth of q. Note that if p is false, then we presume that p=> g is true regardless of whether q is true or take. If p is true and q is halse then p=> q is talse. 6) Equivalence ptog: "pistvue if and only if q is true" True if p and q always have the same truth value. Folse if p and q have opposite truth values.

- Sets

• A set A is an <u>unordered</u> collection of <u>elements</u>. An <u>element</u> can be a number, a derived object (i.e. vectors, matrices, etc.) or another set.

- A set with a finile number of elements can be defined by listing the elements. e.g.: $A = \{2, 3, 6, 9, 123\}$.
- <u>Notation</u>: Let A, B be sets and let x be an element. 1) X ∈ A = x belongs to A x is an element of A
 - 2) x∉ A : x does not belong to A x is not an element of A
 3) A=B : A and B have the same elements.
 4) A⊆B : All the elements of A belong to B

•

· Predicates and quantified statements

- A predicate p(x) is a statement about x which is true or false depending on the value of x.
- Note that x can also be an ordered collection of elements x = (x, x2,..., xn). Then we write p(x) as p(x, x2,..., xn).
- · Given a predicate p(x) and a set A, we define the following quantified statements:
 - 1) VxeA: p(x)

For all XEA, p(x) is satisfied.

2) JXEA: p(x)

There is at beaut one $x \in A$ such that p(x) is satisfied. 3) $\exists ! x \in A : p(x)$

There is a unique $x \in A$ such that p(x) is satisfied. • If A is a finite set, then the above quantified statements are abbreviations for conjunction, disjunction, and exclusive disjunction: For example: $(\forall x \in \{a, b, c\} : p(x)) \iff (p(a) \land p(b) \land p(c))$ $(\exists x \in \{a, b, c\} : p(x)) \iff (p(a) \lor p(b) \lor p(c))$

Quantifiers can be nested to give compound quantified stakements. For example:
1) \for all x \in A : \for y \in B : p(x,y)
For all x \in A , there is a y \in B, such that p(x,y) is satisfied.

, A

EXAMPLES

• We note that: $(a,b) = (c,d) \in (a = c \land b = d)$.

• Let A,B be two sds. We define the Cartesian product
AXB =
$$\{(a, b) \mid a \in A \mid A \mid B \in B\}$$
.
We also define:
A² = A × A = $\{(a, B) \mid a \in A \land B \in A\}$
EXAMPLE
For A = $\{1, 2, 3\}$ and B = $\{5, 6\}$. Calculate A×B, A², B².
Solution
A×B = $\{1, 2, 3\}$ x 45, 6 $\}$ =
= $\{(4, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6)\}$
A^q = A×A = $\{1, 2, 3\} \times \{1, 2, 3\} =$
= $\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 9), (3, 3)\}$
B^q = B×B = $\{5, 6\} \times \{5, 6\} =$
= $\{(5, 5), (5, 6), (6, 5), (5, 6)\}$

f → The above can be generalized as follows
• An ordered n-tuplet (x, x 2, ..., x n) is an ordered
calledion of n elements x₁, x₂, ..., x n.
• Let x = (x, x₂, ..., x n) and y = (y_1, y_2, ..., y_n).
We note that:
x = y => Vac [m] : xa = ya
• Let A, A₂, ..., An be n sets. We define:
A, x A₂x...x An = $\{(x_1, x_2, ..., xn) \mid \forall a \in In] : xa \in Aa\}$
• Special case:
A, x A₂ × A₃ = $\{(x_1, x_2, x_3) \mid x \in A, A \times g \in Ag \mid A_{3} \in A_{3}\}$.

EXERCISES

[] Let A = [7], B = { x \in A | x > 43, and C = {x - 1 | x \in B3. List the elements of a) B b) C c) BAC d) BUC e) A-B f) B-C g) C-B 2 Write out the following statements in English a) VaeA: IbeB: (a,b) ef b) JacA: YBEB: atb>3 c) VaEA : JBEB : (ab>2/a+b>1) d) Va, beA: JCEB: VdeA: ab+bd < 3 e) JacA: YBEB: (ab >3 => b>2) f) VaEA : IBEB : (3a>b / a+b<0) (3) Write the following statements symbolically using quantifiers. a) Every real number is equal to itself. There is a real number x such that 3x-1=2(x+3)6) For every real number x, there is a natural number n c) such that n>x. d) For every real number x, there is a complex number y such that $y^2 = x$. e) There is a real number x such that for all real numbers y we have X+y=0.

f) For all \$70, there is a \$70 such that for all real numbers x, if xo-8 < x < xot8 then 1f(x)-al < E.
g) There is a real number b such that for all natural

- h) For all EZO, there is a natural number the such that for any two natural numbers n, and ng, it nitho and Ng>no, then lan, -anglice.
- i) For any M>O, there is a natural number no, such that for any other natural number n, if n>no then an>M.

(4) Write the belonging condition
$$x \in A$$
 for the following
sets, using quantifiers.
a) $A = \{x^{2}+1 \mid x \in \mathbb{Q} \land 42x < 13$
b) $A = \{3x+1 \mid x \in \mathbb{Z} \land x \text{ is a prime number}\}$
c) $A = \{x \in \mathbb{R} \mid x^{2}+3x > 0\}$
d) $A = \{a^{3}+b^{3}+c^{3}\mid a, b \in \mathbb{R} \land c \in \mathbb{Q} \land a+b+c=0\}$
e) $A = \{x \in \mathbb{R} \mid x^{2}+2x < 0 \lor 3x+1 > -4+x3\}$
f) $A = \{a^{2}-b^{2}\mid a \in \mathbb{N} \land b \in \mathbb{R} \land a+b > 5\}$
g) $A = \{x \in \mathbb{Z} \mid \exists x \in \mathbb{Z} : x = 3x\}$
h) $A = \{ab\mid a, b \in \mathbb{R} \land (a+b>2 \lor a-b < -3)\}$
i) $A = \{x \in \mathbb{R} \mid \exists y \in \mathbb{R} : y^{2}+y = x\}$
j) $A = \{x \in \mathbb{R} \mid \exists y \in \mathbb{R} : x < y^{2}+1\}$
k) $A = \{ab\mid a, b \in \mathbb{R} \land (ab>1 \Rightarrow a^{2}+b^{2} > 2)\}$
l) $A = \{abc\mid a, b \in \mathbb{R} \land (a+b>2 \lor a-c < 3)\}$
m) $A = \{2a+3b\mid a, b \in \mathbb{R} \land ab>1 \land a-b < 0\}$

(5) List the elements for the following cartesian products a) AXB with A= {2,3,43 and B= {7,83 b) AXB with A= {13 and B= {3,33 c) AXB with A= {33 and B= {53 d) [2] x [3] e) AXB with A = [5]-[2] and B = [2] [4] f) AXBXC with A = [3] - {13, B = [3] 0 [6], and C=[2]. g) AXBXC with A= {23, B= [2], C= [4]-[2].

MEE2: Basic Linear Algebra

LINEAR ALGEBRA

V Matrices - Definitions

- An <u>nxm matrix A</u> is a collection of nun numbers Aal Etk (with a E[n] and b E[m]) arranged in <u>n vows</u> and <u>m columns</u> as follows:
 A= [A₁₁ A₁₂ ..., A_{1m}] vows a=1,2,..., n A= [A₂₁ A₂₂ ... A_{2m}] : : ·. : Ani Ang ... A_{2m}]
 Remember: Arc : vow, column Avh : vertical, horizontal columns b=1,2,..., m We also write A = [Aal]. Aal = the element of A at row a and <u>column b</u>.
 Mum (tR) = the set of all nxm matrices with elements from tR.
 For n=m, an nxm matrix is called a <u>square matrix</u> and we write Mn(tR) = Mnn(R).
- Let A, B∈ Mnm (IR) be two matrices. Then
 A=B ⇒ ∀a∈ [n]: ∀b∈ [m]: Aab = Bab.
 Zero matrix:

Let $A \in Hnm(\mathbb{R})$ be a matrix. Then $A = \bigcirc \Longrightarrow \forall a \in [n]: \forall b \in [m]: Aab = 0$

$$\underline{EXAMPLES}$$
a) Let $A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 1 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 & 1 \\ -1 & 0 & -2 \end{bmatrix}$.
Calculate A+B and 2A-3B.
Solution

$$A+B = \begin{bmatrix} 1 & 3 & 2 \\ -3 & 1 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 3 & 1 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 3 & 6 & 3 \\ -1 & 0 & 4 -2 \end{bmatrix} = \begin{bmatrix} 3 & 6 & 3 \\ 2 & 4 & 2 \end{bmatrix}$$

$$2A - 3B = 2\begin{bmatrix} 1 & 3 & 2 \\ 3 & 1 & 4 \end{bmatrix} - 3\begin{bmatrix} 2 & 3 & 1 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 4 \\ -1 & 0 & 4 -2 \end{bmatrix} = \begin{bmatrix} 3 & 6 & 3 \\ 2 & 4 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 4 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 4 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 4 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 4 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 4 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 4 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & -6 & 6 & -9 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & 1 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & -6 & 6 & -9 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & 1 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & -6 & 6 & -9 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & 1 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & -6 & 6 & -9 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & 1 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & -6 & 6 & -9 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & 1 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & -6 & 6 & -9 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & 1 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & -6 & 6 & -9 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & 1 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & -6 & 6 & -9 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & 1 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & -6 & 6 & -9 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & 1 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & -3 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & -3 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & -3 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & -3 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & -3 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & -3 \\ -1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -4 & -3 & -3 \\ -1 & 0 & -3 \end{bmatrix} = \begin{bmatrix} -4 & -3 & -3 \\ -1 & 0 & -3$$

b) Prove: $\forall A, B, C, \in H_{um}(B)$: (A+B)+G = A+(B+C)<u>Solution</u> Let $A, B, G \in H_{um}(R)$ be given. Let $\alpha \in [n]$ and $b \in [m]$ be given. Then: [(A+B)+C]ab = (A+B)ab + Cab = (Aab + Bab) + Cab = = Aab + (Bab + Cab) = Aab + (B+G)ab == [A+(B+C)]ab.

It follows that

$$\forall a \in [n] : \forall b \in [m] : [(A+B)+G]_{ab} = [A+(B+G)]_{ab}$$

 $\Rightarrow (A+B)+G = A+(B+G)$
and therefore:
 $\forall A,B,G \in Mum(R) : (A+B)+G = A+(B+G).$
c) Prove: $\forall A,\mu \in R : \forall A \in Hum(R) : A(\mu A) = (A\mu)A$
Solution
Let $A,\mu \in R$ and $A \in Hum(R) : be given. Let $a \in [n]$
and $b \in [m]$ be given. Then
 $[A(\mu A)]_{ab} = A(\mu A)_{ab} = A(\mu A_{ab}) = (A\mu)A_{ab} = [(A\mu)A]_{ab}.$
It follows that
 $\forall a \in [n] : \forall b \in [m] : [A(\mu A)]_{ab} = [(A\mu)A]_{ab}$
 $\Rightarrow A(\mu A) = (A\mu)A$
and therefore
 $\forall A\mu \in R : \forall A \in Mum(R) : A(\mu A) = (A\mu)A.$$

à

19(4) Giren the function $A(x) = \begin{bmatrix} 1 & 2x & x^2 \\ 0 & 1 & x \\ 0 & 0 & 1 \end{bmatrix}$ Show that A(3x) + 3A(x) = A(0) + 3A(2x), $\forall x \in \mathbb{R}$. (5) Prove that
a) ¥AelR: ¥ABEMnm(R): A(A+B) = AA+AB
b) ¥AcµElR: ¥AEMnm(IR): (A+µ)A = AA+µA

Matrix multiplication

The product AB of two matrices A.B can be defined only when AE Mnl (IR) and BEMIM (IR). That is, the number of columns of A must be equal to the number of rows of B. Then we define the product as follows: · For AEMnl(IR) and BEMlin(IR), we define (AB) E Mnm (R) such that

$$\forall a \in [n] : \forall b \in [m] : (AB)_{ab} = \sum_{y=1}^{l} A_{ay} B_{yb}$$

From the above examples we see that the element (AB) as is the product of your a of matrix A and column le of matrix B. · Properties of Matrix Multiplication VAE Muk(R): VBE Mike (IR): VGE Men (IR): (AB)G = A(BC) $\forall A \in M_{NK}(IR): \forall B, C \in M_{KM}(IR): A(B+C) = AB+AC$ YB, GEMNK(R): VAE MKm(R) : (B+C)A = BA+CA YAER: YAEHnK(R): YBEHKM(R): A(AB) = (AA)B = A(AB) VAEMn(R) : IA = AI = A (IEHn(R) is the identity matrix) $\forall A \in M_n(R) : A \bigcirc = \bigcirc A = \bigcirc$ • It is not true for all matrices that AB=BA (see homework for a counteroxample). This creates some interesting complications. ► Manipulation Properties $\forall A_1B_1G \in M_{um}(IR) : A = B \iff A + G = B + G$ $\forall A, B \in Mnk(R): \forall G \in Mkm(R): A = B \Rightarrow AG = BG$ V CEHnK(R): VABEHKM(IR): A=B => CA = GB VABGEMNMURT: A+B=G CA=G-B · Note that the concellation property CA = CB => A = B is not true for all matrices Matrix powers Let AEHn(IR) be a square matrix. We define $A^n = \underbrace{A \cdot A \cdot \ldots \cdot A}_{n \text{ times}}$ Va, BEIN- 203: VAEHn(B): AaAB = Aatb $\forall a, b \in \mathbb{N} - so3 : \forall A \in M_n(\mathbb{R}) : (A^a)^b = A^{ab}$

$$\underline{\text{EXAMPLES}}$$
a) Let $A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$. Find all xiyeth such that $A^2 = xA - yI$.
Solution
We note that
 $A^2 = AA = \begin{bmatrix} 9 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 9 & 1 \\ 3 & q \end{bmatrix} = \begin{bmatrix} 2 \cdot 2 + 1 \cdot 3 & 9 \cdot 1 + 1 \cdot 9 \\ 3 \cdot 2 + 2 \cdot 3 & 3 \cdot 1 + 2 \cdot 2 \end{bmatrix} =$

$$= \begin{bmatrix} 4+3 & 2+2 \\ 6+6 & 3+4 \end{bmatrix} = \begin{bmatrix} 7 & 4 \\ 12 & 7 \end{bmatrix}$$
and
 $xA - yI = x \begin{bmatrix} 2 & 1 \\ 3 & q \end{bmatrix} - y \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2x & x \\ 3x & 9x \end{bmatrix} - \begin{bmatrix} 7 & 0 \\ 0 & y \end{bmatrix} =$

$$= \begin{bmatrix} 2x - y & x \\ 3x & 9x - y \end{bmatrix}$$
It follows that
 $A^2 = xA - yI \iff \begin{bmatrix} 7 & 4 \\ 12 & 7 \end{bmatrix} = \begin{bmatrix} 2x \cdot y & x \\ 3x & 9x - y \end{bmatrix} \iff \begin{cases} 2x \cdot y = 7 \\ 3x & 12 \\ x = 4 \end{cases} \iff \begin{cases} 2 \cdot 4 - y = 7 \\ x = 4 \end{cases} \iff \begin{cases} 8 - y = 7 \\ x = 4 \end{cases} \iff \begin{cases} 8 - y = 7 \\ x = 4 \end{cases} \iff \begin{cases} 9 - y = 7 \end{cases} \iff \begin{cases} 9 - y = 7 \\ x = 4 \end{cases} \iff \end{cases}$

6) Let
$$A_{i}B \in M_{n}(\mathbb{R})$$
 such that $A^{2} = 1$ and $B^{2} = B$. Show
that $(9B-I)^{2} = I$ and $(A+I)^{2} = 2(A+I)$.
Solution
Assume that $A_{i}B \in M_{n}(\mathbb{R})$ with $A^{2} = I$ and $B^{2} = B$. Then
 $(9B-I)^{2} = (9B-I)(9B-I) = 98(9B-1) - 1(9B-I) =$
 $= (9B)(9B) - (2B)I - I(9B) + I^{2} =$
 $= 4B^{2} - 9B - 9B + I = 4B^{2} - 4B + I \stackrel{*}{=}$
 $= 4B - 4B + I = 0B + I = 0 + I = 1.$

$$(A+I)^{2} = (A+I)(A+I) = A(A+I) + I(A+I) =$$

= AA + AI + IA + I² = A² + A + A + I =
= A² + 2A + I. = I + 2A + I = 2A + 2I
= 2(A+I).

It follows that

$$\forall a \in [n]: \forall b \in [m]: [(B+C)A] ab = (BA+CA)ab \Longrightarrow$$

 $\Rightarrow (B+C)A = BA+CA$
and therefore
 $\forall : B, C \in M_{nix}(IR): \forall A \in M_{um}(IR): (B+C)A = BA+CA.$
d) Prove: $\forall A, B, C \in M_{nim}(IR): (A = B \Rightarrow A+C = B+C)$
Solution
Let $A, B, C \in M_{nim}(IR)$ be given and assume that $A = B$.
Then:
 $A = B \Rightarrow \forall a \in [n]: \forall b \in [un]: Aab = Bab$ (1)
Let $a \in [n]$ and $b \in [un]$ be given. Then:
 $(A+C)ab = Aab + Cab = Bab + Cab = (B+C)ab$
and it follows that
 $\forall a \in [n]: \forall b \in [un]: (A+C)ab = (B+C)ab$
 $\Rightarrow A+C = B+C$
and therefore we have shown that
 $\forall A, B, C \in M_{nim}(IR): (A = B \Rightarrow A+C = B+C)$

-

 $(1,1,2,\dots,2,n,1,2,N) = (1,1,2,\dots,2,n,1,2,1,2,\dots,2,N)$

EXERCISES
(a) Consider the indrive
$$A = \begin{bmatrix} 2 & 5 \\ -3 & i \end{bmatrix}$$

a) Find the unique $x, y \in \mathbb{R}$ such that $A^2 = xA + yI$
(b) $Dre(a)$ to find $z_i w \in \mathbb{R}$ such that $A^3 = 2A + wI$.
(c) Given the matrices
 $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \\ 2 & 1 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}$
evaluate and simplify
a) $C = AB$
(c) $E = 2A^3 - 3A + 1$
(c) $D = BA - 3B^2$
(c) $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} a & B & c \\ c & a & k \\ k & c & a \end{bmatrix}$
evaluate and simplify $C = AB - BA$
(c) Given the matrix $A = \begin{bmatrix} a & b \\ c & a \end{bmatrix}$ with $a, b, c, d \in \mathbb{R}$
show that: $A^2 - (a + i)A + (ad - b_0)I = 0$

•••• • • • •

(1) Prove the following properties
a)
$$\forall A \in H_{NK}(\mathbf{R}) : \forall B, C \in H_{KM}(\mathbf{R}) : A(B+G) = AB + AC$$

b) $\forall A \in H_{NK}(\mathbf{R}) : \forall B \in H_{M}(\mathbf{R}) : A(B+G) = A(BC)$
(1) Rotation matrix
Let $R(\mathcal{P}) = \begin{bmatrix} \cos \vartheta & -\sin \vartheta &] \\ & \sin \vartheta & \cos \vartheta \end{bmatrix}$
Show that
a) $R(\vartheta)R(\vartheta_2) = R(\vartheta_1 + \vartheta_2) , \forall \vartheta_1, \vartheta_2 \in \mathbb{R}$
b) $R(\vartheta)R(\vartheta_2) = R(\vartheta_1 + \vartheta_2) , \forall \vartheta_1, \vartheta_2 \in \mathbb{R}$
c) $R(\vartheta)R(-\vartheta) = 1 , \forall \vartheta \in \mathbb{R}$.
(12) For $A = \begin{bmatrix} 1 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$
show that $AB \neq BA$
(13) For $A = \begin{bmatrix} 1 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$
show that $AB \neq BA$
(13) For $A = \begin{bmatrix} 1 & a \end{bmatrix}$ and $B = \begin{bmatrix} 1 & k \end{bmatrix}$ with
a, l e R, show that $AB = BA$.
(14) Consider the function.
 $\forall x \in \mathbb{R} : H(x) = \begin{bmatrix} 1 & 0 & x \\ -x & 1 & -x^2/2 \\ 1 & 0 & 1 \end{bmatrix}$
Show that
 $\forall \alpha, \beta \in \mathbb{R} : H(\alpha)H(\beta) = H(\alpha + \beta)$.

(5) Let
$$2=a+bi \in C$$
 be a complex number, and
define

$$M(2) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
Show that
a) $\forall 2_1, 2_2 \in C : M(2_1+2_2) = M(2_1) + M(2_2)$
(a) $\forall 2_1, 2_2 \in C : M(2_1+2_2) = M(2_1) + M(2_2)$
(b) $\forall 2_1, 2_2 \in C : M(2_1+2_2) = M(2_1) + M(2_2)$
(c) This shows that $M(2)$ "imitates" the behaviour
of complex number algebra.
(b) Let $A_1B \in Hn(IR)$. Show that
a) $AB = BA \implies (A-11)(B-A1) = (B-A1)(A-A1), \forall A \in R.$
(c) $(A+B)^2 = A^2+2AB + B^2 \implies AB = BA$
(c) $A^2 = A \implies (A-1)^2 = 1-A$
(c) $AB = BA \implies A^2B^2 = B^2A^2$
(c) $(B^2 = I \land AB = -AB) \implies AB = BA = 0$
(c) $A^2 = I \land AB = -AB \implies AB = BA = 0$
(c) $A = (1/2)(I+A)$
 $G = (1/2)(I+A)$
 $G = (1/2)(I+A)$
 $G = (1/2)(I+A)$
 $G = B^2 = B$ and $G^2 = G$.

Motrix Inverses

· Let A ∈ Hn (R) be a square matrix. We say that B inverse of A (=) AB = BA = 1 · We define the set of all matrices AEMn(R) that have an inverse as: GL(n, IR) = {A E Mn (R) | 3B E Hn (R): AB = BA = 15 We say that A non-singular () AE GL(n.R) A singular (A& GL(n, R) Square matrices are not guaranteed to have on inverse. For example, for A = [00], we have: $\forall x, y, z, w \in \mathbb{R}: \begin{bmatrix} 0 & 0 & \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & \begin{bmatrix} z & y \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & \begin{bmatrix} z & y \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & \begin{bmatrix} z & y \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & \begin{bmatrix} z & y \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & \begin{bmatrix} z & y \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & \begin{bmatrix} z & y \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & \begin{bmatrix} z & y \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & \begin{bmatrix} z & y \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & \begin{bmatrix} z & y \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 1 & \frac{1}{2} & \frac{1$ However, we will argue that if a matrix does have an inverse, it is unique: • $\forall A, B, G \in H_{M}(IR) : \\ \\ AB = BA = 1 \implies B = G$ LAC=CA=IProof Let A, B, G ∈ Mn(IR) be given such that AB=BA=1 and AG = GA = I. Then B = BI [Identify matrix] = B(AC) [Hypothesis AC=I] = (BA) G [Associative property]

= IG [Hypothesis
$$BA = 1$$
]
= G [Identity matrix]
It hollows that
 $\forall A, B, C \in Hu(R): \begin{cases} AB = BA = 1 \implies B = G \\ A C = (A = 1) \end{cases}$
The unique inverse of A is denoted as A^{-1} ,
as long as it exists.
 \blacktriangleright Cancellation property.
 $\forall A, B \in Mn(R): \forall C \in GL(u, R): (CA = CB \implies A = B)$
 $\forall A, B \in Mn(R): \forall C \in GL(u, R): (CA = CB \implies A = B)$
 $\forall A, B \in Mn(R): \forall C \in GL(u, R): (AC = BC \iff A = B)$
 $\forall A, B \in Mn(R): \forall C \in GL(u, R): (AC = BC \iff A = B)$
 $\forall A, B \in Mn(R): \forall C \in GL(u, R): (AC = BC \iff A = B)$
 $\forall A, B \in Mn(R): \forall C \in GL(u, R): (AC = BC \iff A = B)$
 $\forall A, B \in Mn(R): \forall C \in GL(u, R): (AC = BC \iff A = B)$
 $\forall A, B \in Mn(R): \forall C \in GL(u, R): (AC = BC \iff A = B)$
 $\forall A, B \in Mn(R): \forall C \in GL(u, R): (CA = CB \iff A = B)$
 $\forall A, B \in Mn(R): \forall C \in GL(u, R): (CA = CB \implies A = B)$
 $\exists c = finit: statement. Let A, B \in Mn(R) and
 $G \in GL(u, R)$ be given, such that $CA = CB$. Then
 $A = IA = [identity: matrix]$
 $= (C^{-1}C)A [C^{-1} inverse of G]$
 $= C^{-1}(CA) [associative: property]$
 $= C^{-1}(CB) [hypothesis: CA = CB]$
 $= (C^{-1}C)B [associative: property]$
 $= IB [C^{-1} inverse of G]$
 $= B [identity: matrix]$$

.

,

It follows that

$$\forall A, B \in Hn(IR) : \forall G \in GL(n, IR): (CA = (B => A = B)$$

Threese of a 9×2 matrix
• Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in Ng(IR)$ be a 2×2 square matrix
a) If $D = ad - bc \neq 0$, then A is non-singular with
 $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
b) If $D = ad - bc = 0$, then A is singular.
• Application to 9×2 linear systems.
Any 9×2 linear system given by
 $\begin{bmatrix} a_{11} \times + a_{12} & y = b_{1} \\ a_{21} \times + a_{22} & y = b_{2} \end{bmatrix}$
can be rewritten in torms of matrix algebra as:
 $\begin{bmatrix} a_{41} & a_{42} \\ a_{41} & a_{42} \end{bmatrix} \begin{bmatrix} x \\ b_{2} \end{bmatrix}$
and then solved using the following property:
• $\forall A \in GL(h_{1}R): \forall x, b \in Hm(IR): (Ax = b \Leftrightarrow x = A^{-1}b)$

÷.....

$$\frac{P_{roof}}{|et A \in GL(n, \mathbb{R}) \text{ and } x_i b \in Hin(\mathbb{R}) \text{ be given. Then:}}$$

$$Ax = b \iff A^{-1}(Ax) = A^{-1}b \qquad [cancellation properly]$$

$$\iff (A^{-1}A)x = A^{-1}b \qquad [associative properly]$$

$$\iff (A^{-1}A)x = A^{-1}b \qquad [A^{-1} \text{ inverse of } A]$$

$$\iff x = A^{-1}b \qquad [iduality matrix]$$
It follows that
$$\forall A \in GL(n, \mathbb{R}) : \forall x, b \in Hn(\mathbb{R}) : (Ax = b \iff x = A^{-1}b) \quad D$$
Consequently, if $a_{11}a_{22} - a_{12}a_{31} \neq 0$, then:

$$\begin{cases} a_{11}x + a_{12}y = b_{12} \iff a_{12}a_{22}a_{22}a_{33}a_{33$$

31

,

EXAMPLES

a) Use the indivicit inverse to solve the system

$$\begin{cases} 2x+5y = 19 \\ 3x-y = 1 \end{cases}$$

$$\begin{cases} 3x-y = 1 \\ 3x-y = 1 \end{cases} \implies \begin{cases} 2 & 5 \\ 3 & -1 \end{cases} \begin{cases} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 19 \\ 4 \end{bmatrix} \implies \begin{bmatrix} -1 & -5 \\ -3 & 9 \end{bmatrix} \begin{bmatrix} 19 \\ 1 \end{bmatrix} = \frac{1}{2(-1)-5\cdot3} \begin{bmatrix} -1 & -5 \\ -3 & 9 \end{bmatrix} \begin{bmatrix} 19 \\ 1 \end{bmatrix} = \frac{-1}{17} \begin{bmatrix} (-1)\cdot19 + (-5)-1 \\ (-3)\cdot19 + 2\cdot1 \end{bmatrix} = \frac{-1}{17} \begin{bmatrix} -19-5 \\ -36 + 9 \end{bmatrix} = \frac{-1}{17} \begin{bmatrix} -17 \\ -34 \end{bmatrix} = \begin{bmatrix} 1 \\ 9 \end{bmatrix}$$
b) Similarly for the following parametric system:

$$\begin{cases} (a+1)x + (a-1)y = 4a+9 \\ 2ax + (a-1)y = 7a-1 \end{bmatrix} = (a+1)(a-1) - 2a(a-1) = (a+1)(a+1-2a) = \frac{-1}{17} = (a+1)(a-1) - 2a(a-1) = (a-1)(a+1-2a) = \frac{-1}{17} = (a+1)(a-1) - 2a(a-1) = (a-1)(a+1-2a) = \frac{-1}{17} = (a-1)(4-a) = -(a-1)^{2}.$$

$$(ax + 1)x + (a-1)y = 4a+9 \iff 1 = 2 = 2 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and therefore:} = \frac{1}{3ax + (a-1)y = 7a-1} = 2 \Rightarrow 0 \neq 0, \text{ and theref$$

$$\begin{split} & \left(\sum_{i=1}^{n} \left[\frac{a+i}{2a} - \frac{a-i}{2a} \right] \right)^{-1} \left[\frac{4a+2}{1a-i} \right] = \frac{-1}{(a-i)^2} \left[\frac{a-i}{2a} - \frac{1}{a+i} \right] \left[\frac{4a+2}{7a-i} \right] = \frac{-1}{(a-i)^2} \left[\frac{(a-i)(4a+2) + (1-a)(7a-i)}{2a} \right] = \frac{-1}{(a-i)^2} \left[\frac{(a-i)(4a+2) + (a+i)(7a-i)}{2a} \right] = \frac{-1}{(a-i)^2} \left[\frac{(a-i)(4a+2) - 7a + i)}{2a - 8a^2 - 4a + 7a^2 - a + 7a - i} \right] = \frac{-1}{(a-i)^2} \left[\frac{(a-i)(-3a+3)}{2a - 4a + 7a^2 - a + 7a - i} \right] = \frac{-1}{(a-i)^2} \left[\frac{(a-i)(-3a+3)}{2a - 4a + 7a^2 - a + 7a - i} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a + 7a^2 - a + 7a - i} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a + 7a^2 - a + 7a - i} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2} \left[\frac{-3(a-i)^2}{2a - 4a - 1} \right] = \frac{-1}{(a-i)^2}$$

(con-

EXERCISES

(B) Use the matrix inverse to solve the following systems: a) $\int x + 3y = 4$ $\int 2x + y = 3$ $\int 2x + 2y = 4$ $\int 2x + 2y = 4$ $\int x + 3y = 10$ d) $\int 2ax + (a-3)y = a-1$ $\int (a-3)x + 2ay = a-a^2$ e) $\begin{cases} x + (a + i)y = 2 \\ (a + 2)x + (1 - a^2)y = 5 \end{cases}$ f) $\begin{cases} a x - y = 1 - a \\ x - ay = a - a^2 \end{cases}$ > Distinguish between the values of the parameter a eth where the corresponding matrix is non-singular vs. singular. (9) Find all ath for which the matrix $A = \begin{bmatrix} \alpha + 3 & 2 \\ 1 & -\alpha \end{bmatrix}$ is non-singular. (20) If A,B E Mu (B) are non-singular, show that AB is also non-singular with the inverse given by (AB)-1 = B-1 A-1
V Matrix Transpose

- Let A ∈ Mnm (IR) be a matrix. We define the transpose matrix AT ∈ Mmn (IR) as: ∀a ∈ [m]: ∀b ∈ [m]: (AT) ab = Aba
 Let A ∈ Hu (IR) be a square matrix. We say that A symmetric ⇔ AT = A ⇔ ∀a, b ∈ [n]: A ab = Aba
 Properties ∀A, B ∈ Mnm (IR): (A+B)^T = A^T+B^T ∀A∈IR: ∀A ∈ Mnm (IR): (AA)^T = AA^T
- VAEHNK(IR): VBEHKM(IR): (AB)T = BTAT
- $\forall A \in GL(n, \mathbb{R}): (A^{T})^{-1} = (A^{-1})^{T}$

 $\forall A \in Mum(R): (AT)T = A$

EXAMPLES

a) Prove the property VAEHnK(IR): VBEHKIN(IR): (AB)T = BTAT Solution Let A & Mnk(IR) and B & Hkm(IR) be given. Let a & Ind and beinj be given. Then: [(AB)T] ab = (AB) ba = Z Aby Bya = Z Ayb Bay = JE[k] JE[k] = I Bay Ays = (BTAT) ab

It follows that

$$Vac[M]: VBc[M]: [(AB)^T]_{ob} = (B^TA^T)_{ob}$$

 $\Rightarrow (AB)^T = B^TA^T$
and therefore
 $VAcMink(IR): VBcMinm(R): (AB)^T = B^TA^T$. 0
6) Show that
 $VA_iB \in Min(IR): \begin{cases} A_iB \text{ symmetric } \Rightarrow AB \text{ symmetric.} \\ AB = BA \end{cases}$
Let $A_iB \in Min(IR)$ be given such that A_iB symmetric and
 $AB = BA$. Then
 $(AB)^T = B^TA^T$ [transpose of instrix product]
 $= BA$ [hypothesis: A_iB symmetric]
 $= AB$ [hypothesis: $AB = BA$]
 $\Rightarrow AB$ symmetric.
It follows that
 $VA_iB \in Hin(IR): \begin{cases} A_iB \text{ symmetric} \Rightarrow AB \text{ symmetric} \end{bmatrix}$

,

Exercises (26) Give proofs for all properties of the matrix transpose. (27) Show that if AEMn(B) is symmetric and non-singular, then A⁻¹ is also symmetric. (28) Let ABEMn(IR). Show that A, B, AB symmetric ⇒ AB=BA. (29) Given $A, P \in H_n(\mathbb{R})$, show that A symmetric $\implies B = P^T A P$ symmetric (30) Consider the rotation matrix $R(\partial) = [\cos \beta - \sin \beta]$ Sind cost a) Show that R(9? is non-singular with $[R(\vartheta)]^{-1} = R(-\vartheta)$ b) Show that $[R(9)]^{T} = R(-9)$ c) For what angles Jeth is R(D) symmetric?

(31) Let AEMM(R) be a square matrix. Show that a) A+AT symmetric B) AT A symmetric (32) Let z=atbiel with a, bell and i the imaginary unit and define $M(z) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ Show that a) $\forall z \in \mathbb{C} - \frac{5}{3} : H(1|z) = H(z)^{-1}$ B) $\forall 2, e \mathbb{C} : \forall 22 \in \mathbb{C} - \frac{1}{2}o_3^2 : M(2, |22) = M(2, 1) M(22)^{-1}$ (33) Let A,B & Mn (R) be two square matrices. We say that B skew-symmetric \Leftrightarrow $\forall a, b \in [n] : B a B = -B a$ $\Leftrightarrow B^T = -B$ Show that VABEHullei): SA symmetric $\implies A^2BA^2$ skew-symmetric B skew-symmetric

MEE3: Determinants and Linear Systems

DETERMINANTS AND LINEAR SYSTEMS
V Determinants
Determinants are used to find the inverse of num matrices,
and solve num linear systems.

$$\rightarrow$$
 Leibnitz definition of determinants
1) fermulations
Let $[u] = \{1, 2, 3, ..., u\}$. A permutation σ is a reshuffling
of the order of the elements of u . Formally, σ is
a ligection $\sigma : [u] - [u]$ whereby each element of $[u]$
is mapped into a distinct element of $[u]$.
 $fn = set of all permutations on $[u]$
EXAMPLE
For $u = 3$:
 $S_3 = \{(1, 2, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), (1, 3, 2), (2, 1, 3)\}$
and the six permutations of $[3]$.
For $\sigma = (2, 3, 1)$: $\sigma(u) = 2$, $\sigma(g) = 3$, $\sigma(3) = 4$.
2) Permutation parity
Let $\sigma \in S_n$. Be a permutation of $[u]$. We define the
parity $S(\sigma)$ of σ as:
 $S(\sigma) = sign \left[\prod_{d=1}^{n-1} \prod_{d=d}^{n} (\sigma(a) - \sigma(d)) \right]$$

,

with sign(x) defined as

$$\begin{cases}
1, & \text{if } x > 0 \\
5 & \text{if } x = 0 \\
-1, & \text{if } x < 0
\end{cases}$$

For $\sigma \in S_{H}$, $S(\sigma) = 1$ or $S(\sigma) = -1$. We say that σ even permutation (=) $S(\sigma) = 1$ σ odd permutation (=) $S(\sigma) = -1$

EXAMPLE

For
$$\sigma = (3, 1, 4, 2)$$
, the parity of σ is:
 $s(\sigma) = sign \begin{bmatrix} 3 & 4 \\ TT & TT & (\sigma(a) - \sigma(b)) \\ b = 1 & a = b + 1 \end{bmatrix}$
 $= sign [(\sigma(2) - \sigma(1))(\sigma(3) - \sigma(1))(\sigma(4) - \sigma(b))(\sigma(3) - \sigma(2)) \\ \times (\sigma(4) - \sigma(2))(\sigma(4) - \sigma(3)]]$
 $= sign [(1-3)(4-3)(2-3)(4-1)(2-1)(2-4)]$
 $= sign [(-2)(4)(-1)(3)(4)(-2)] = -1.$

• A transposition is a permutation that switches only two elements of [n]. Every permutation can be constructed as a sequence of transpositions. An even permutation can be constructed by an even number of transpositions. An odd permutation requires an odd number of transpositions.

·ə.

45

-

d) Let A,BEMu(B), Show that AB=1=>BA=1. Solution

Assume that AB=I. It follows that $det(A) det(B) = det(AB) = det(I) = 1 \Longrightarrow$ $\Rightarrow det(A) det(B) \neq 0 \stackrel{*}{\Rightarrow}$ $\rightarrow det(A) \neq 0 \land det(B) \neq 0 \Rightarrow$ => A, B are non-singular Let A⁻¹, B⁻¹ be the corresponding inverse matrices. Then BA = I(BA) [identity matrix] = (A-1A)(BA) [A-1 inverse of A] = A⁻¹ [A(BA)] [associative property] = A⁻¹ [(AB) A] [ossociative property] = A⁻¹ I A [hypothesis AB = I] = A-1 A [identify matrix] = I [A-1 inverse of A]

Note that we use the contropositive of the statement Va, belh: (ab = 0 (=> (a=0 V k=0)) which is given by Va, belh: (ab ≠0 (=> (a≠0 A b≠0)).

EXERCISES (1) Which of the following permitations are odd and which are even? Show using both the product definition and enumeration of transpositions. a) $\sigma = (1, 3, 2, 4)$ c) $\sigma = (2, 3, 4, 1)$ b) $\sigma = (3, 1, 4, 2)$ d) $\sigma = (1, 4, 3, 2)$ (2) Calculate the following determinants: a) $\begin{vmatrix} 3 & 2 \\ 5 & 4 \end{vmatrix}$ b) $\begin{vmatrix} 2a & att \\ a-t & a \end{vmatrix}$ c) 1 0 3 d) a b c 2 1 0 c a b 0 3 1 b c a (3) Given the matrix $A = \begin{bmatrix} 1 & \chi & \chi^2 \\ \chi^2 & 1 & \chi \\ \chi & \chi^2 & 1 \end{bmatrix}$ show that A singular (=> X=1 (4) Solve with respect to x the following equations: a) $\begin{vmatrix} 1 & 3x-4 \end{vmatrix} = 0$ b) $\begin{vmatrix} x-1 & x^2-1 \end{vmatrix} = 0$ $\begin{vmatrix} -1 & 4x+1 \end{vmatrix}$ $\begin{vmatrix} 1-x^2 & x^3-1 \end{vmatrix}$

6 Let A,BEMu(R). Show that AB singular => (A singular VB singular) 6 Rotation matrix. Consider the rotation matrix $R(\mathcal{F}) = \begin{bmatrix} \cos \mathcal{F} & -\sin \mathcal{F} \end{bmatrix}$ sing cost Show that det R(0) = 1. (7) Complex number matrix Let z=atbiell be a complex number with a, b Elk, and define $M(z) = \begin{bmatrix} a & -b \end{bmatrix}$ B Show that det M(Z) = 121, YZEC.

Co-factor expansion of determinants Let AEHulth) be a square matrix. Let a, be[n]. The minor matrix Mod(A) is defined as the (n-1)x(n-1) square matrix obtained from A by deleting: (a) the ath row of A (b) The bth column of A. The formal definition of Mab(A) is given by: (Acd, if c<a Ad<b Vc,de[n-1]: (Mab(A)) d = 2 Ac, dr1, if exa / dzb Actual, if czaldkb Actu, dt1, if czaldzb EXAMPLE Given $A = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 5 & 7 & 2 \\ 3 & 1 & 5 & 2 \\ 1 & 4 & 7 & 7 \end{bmatrix} \Rightarrow$ Note that Ag3 = 7 $\implies M_{q_3}(A) = \begin{array}{c} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 4 & 0 \end{array}$ • We may use minor matrices to calculate determinants recursively as follows:

50

1) Row Expansion $\forall a \in [n]: det A = \prod_{b=1}^{n} (-1)^{a+b} A_{ab} det (Mab(A))$ 2) Column expansion Vbe[n]: det A = I (-1) ath Aab det (Mab(A)) EXAMPLE $\begin{vmatrix} 3 & 1 & 2 \\ 1 & 5 & 1 \\ 2 & 3 & 1 \end{vmatrix} = \begin{vmatrix} sign & of \\ (-1)a+b & 4s \\ + & - + \\ + & - + \end{vmatrix}$ $= (-1) \cdot 1 \cdot \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} + (+1) \cdot 5 \cdot \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + (-1) \cdot 1 \cdot \begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} =$ $= -(1 \cdot 1 - 2 \cdot 3) + 5(3 \cdot 1 - 2 \cdot 2) - (3 \cdot 3 - 1 \cdot 2) =$ = -(1-6)+5(3-4)-(9-9)== -(-5) + 5(-1) - 7 = 5 - 5 - 7 = -7.

$$\begin{array}{c} & \underbrace{\text{Simplification of determinants}} \\ \text{The calculation of determinants can be simplified considerably by using the following properties:} \\ \text{Simplified constrained changes sign.} \\ \text{e.g.} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = -\begin{bmatrix} c_1 & c_2 & c_3 \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = 0 \\ \text{Simplified then the determinant is equal to 0.} \\ \text{Simplified to 0.} \\ \text{Simplified a row or column by AEIR, then the determinant itself is multiplied by A. \\ \text{e.g.} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = 0 \\ \text{Simplified constrained to 0.} \\ \text{Simplified constrained to$$

.

- 54

57 $= 4 \begin{vmatrix} -2 & (-1) & -1 \\ -1 & 0 \end{vmatrix} = 4 \cdot (-1) (-1) \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} = 4 \cdot (-1) (-1) \begin{vmatrix} 1 & 1 \\ -1 & -1 \end{vmatrix} = 4 \cdot (-1) (-1) \begin{vmatrix} 1 & 1 \\ -1 & -1 \end{vmatrix}$ =4(1(-2)-1(-1))=4(-2+1)=-4We use determinant properties to zero out a column or a row. Then we perform a co-tactor expansion. This reduces the size of the determinant. We repeat, all the way down to 2×2 size.

8) Show that

$$\begin{vmatrix} a+b & b+c & c+a \\ c+a & a+b & b+c \\ b+c & c+a \\ b+c & c+a \\ c+a & a+b \\ c+a & a+b \\ b+c \\ c+a & a+b \\ c+a \\ c+a & a+b \\ c+a \\$$

...,

.....

-524

59 $= 2(a+b+c)[(a-c)(b-c)+(a-b)^{2}] =$ = 2(a+b+c)(<u>ab-ac-bc+c^{2}+a^{2}-2ab+b^{2})</u> = 2(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca).

EXERCISES (5) Evaluate the following determinants: a) 358 369 374d) 1 -2 6 3 1 1 2 1 3 1 -1 4 5 1 2 -1 c) [3 [6 19 14 17 20 15 18 21 e) 1 2 3 4 f) -1 0 2 1 -3 2 3 4 1 3 4 1 2 4 1 2 3 4 5 1 -1 120-2 (0) Solve the following equations

(1) Show that
a)
$$\begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \end{vmatrix} = 0$$

 $\begin{vmatrix} 1 & c & a+b \end{vmatrix}$
b) $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$
c) $\begin{vmatrix} a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b \end{vmatrix} = (a + b + c)^3$
 $2c & 2c & c - a - b \end{vmatrix}$
d) $\begin{vmatrix} x_{ty} & 2 & 2 \\ y & 2tx & y \\ x & x & 2ty \end{vmatrix}$
e) $\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = abc(a - b)(b - c)(c - a)$
f) $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1ta & 1 \\ 1 & 1ta \end{vmatrix} = ab$

Y Hatrix inverse, in general
Recall that for a 9x9 metrix

$$A = \begin{bmatrix} a & b \end{bmatrix}$$

we have
 $ad-bc \neq 0 \Rightarrow A^{-1} = -\frac{1}{ad-bc} \begin{bmatrix} d & -b \end{bmatrix}$
For larger matrices, we use the following theory:
 $Def : let A \in Hn(B)$ be a square matrix. We define
the adjugate matrix $adj(A)$ such that
 $Va, b \in [n] : [adj(A)]ab = (-i)^{a+b} det(M_{ba}(A))$
 $Thm : let A \in GL(n, B)$ be a non-singular square
matrix. Then
 $A^{-1} = (-\frac{1}{det(A)}) adj(A)$

şû.

$$\underbrace{\text{Example}}_{\text{Find. the matrix inverse of } A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & -1 \\ 1 & 2 & 5 \end{bmatrix}}_{\text{Solution}}$$
Since,
$$\underbrace{1 & 0 & -1 & (-2) & (-1) & 1 & 0 & -1 \\ 4 & 2 & 5 & (-1) & (-2) & (-1) & (-2) & (-1) \\ 1 & 2 & 5 & (-1) & (-2) & (-1) & (-2) & (-1) \\ 1 & 2 & 5 & (-1) & (-2) & (-1) & (-2) & (-1) \\ 1 & 2 & 5 & (-2) & (-2) & (-2) & (-2) & (-2) & (-2) \\ 1 & 2 & 5 & (-2) &$$

$$\begin{bmatrix} a d j (A) \end{bmatrix}_{21} = (-1)^{2+1} det (M_{12}(A)) = -\begin{bmatrix} 2 & -1 \\ 1 & 5 \end{bmatrix}$$

= $-(2 \cdot 5 - (-1)A) = -(10 + 1) = -11$
$$\begin{bmatrix} a d j (A) \end{bmatrix}_{22} = (-1)^{2+2} det (M_{22}(A)) = \begin{bmatrix} 1 & -1 \\ 1 & 5 \end{bmatrix}$$

= $1 \cdot 5 - (-1) \cdot 1 = 5 + 1 = 6$
$$\begin{bmatrix} a d j (A) \end{bmatrix}_{23} = (-1)^{2+3} det (M_{22}(A)) = -\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$

= $-\begin{bmatrix} 1 (-1) - (-1)2 \end{bmatrix} = -(-1+2) = -1$
$$\begin{bmatrix} a d j (A) \end{bmatrix}_{32} = (-1)^{3+2} det (M_{23}(A)) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} a d j (A) \end{bmatrix}_{32} = (-1)^{3+2} det (M_{23}(A)) = -\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$$

$$= -(1 \cdot 2 - 0 \cdot 1) = -2$$

$$\begin{bmatrix} a d j (A) \end{bmatrix}_{32} = (-1)^{3+2} det (M_{23}(A)) = -\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$$

$$= -(1 \cdot 2 - 0 \cdot 1) = -2$$

$$\begin{bmatrix} a d j (A) \end{bmatrix}_{33} = (-1)^{3+2} det (M_{23}(A)) = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$= -(1 \cdot 2 - 0 \cdot 1) = -2$$

$$\begin{bmatrix} a d j (A) \end{bmatrix}_{33} = (-1)^{3+2} det (M_{23}(A)) = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$= -(1 \cdot 2 - 0 \cdot 1) = -2$$

$$\begin{bmatrix} a d j (A) \end{bmatrix}_{33} = (-1)^{3+2} det (M_{23}(A)) = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$= -(1 \cdot 2 - 0 \cdot 1) = -2$$

$$\begin{bmatrix} a d j (A) \end{bmatrix}_{33} = (-1)^{3+2} det (M_{23}(A)) = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$= A^{-1} = \frac{1}{3} - 2 + 1$$

$$= A^{-1} = \frac{1}{4} a d j(A) = \frac{1}{4} \begin{bmatrix} 7 & -2 & 1 \\ -11 & 6 & -1 \\ 3 & -2 & 1 \end{bmatrix}$$

•

V nxn Linear system of equations • An nxn linear system of equations is a system of the form: $\begin{array}{c} A_{11} \times_1 + A_{12} \times_2 + \cdots + A_{1n} \times_n = b_1 \\ A_{21} \times_1 + A_{22} \times_2 + \cdots + A_{2n} \times_n = b_2 \\ \vdots \end{array}$ (i)(Anixi+Angxg+...+ Ann xn = bn · This system can be rewritten as a matrix equation: $\begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_2 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$ or equivalently as (2) Ax = bwith AE Mn (IR) and x, b E Mn, (IR). · We say that Eq.(2) is homogeneous \Leftrightarrow b=0Eq.(2) is inhomogeneous \Leftrightarrow $b\neq 0$

· Solution techniques for solving linear systems include: a) Matrix inverse method b) Cramer's rule c) Gaussian elimination Matrix inverse method We have already explained that if det $A \neq 0$, then only linear system can be solved via the property $\forall A \in GL(n, \mathbb{R}) : \forall x, b \in Mn(\mathbb{R}) : (Ax = b \leftrightarrow x = A^{-1}b)$ However, due to the difficulty of calculating A-1, this method is recommended only for 2x2 systems, as was explained earlier. Cramer's rule We write A=[A, Az Az ··· An] with A. Az, Az, Mn E Mn (UR) the columns of the matrix A, and define the determinants D = det A = det ([A, Az Az ... An]) D, = det ([b Az Az ... An]) Dg=det ([A, b Az ... An])

D3 = det ([A, A2 b ... An]) Dn=det ([A, Az Az... 6]) Note that for any KE[h], in the determinant Dk, we replace the Kth column of A with the column matrix b. · Cramer's method for solving linear systems is based on the following theorem: Thm: Given the linear system Ax=6 with AEMu (IR) and x, b ∈ MuilB. a) If D=0, then Ax=6 has a unique solution given by $\forall k \in [n]: X_k = D_k / D.$ B) (D=0 => Ax=b has no solutions $2 \exists k \in [n] : D \neq 0$ Remark: Note that the theorem is incondusive when $\int D = 0$ 2 VKE[n]: D=0 Then, the system needs to be investigated via Gaussian Elimination method.
a)
$$\begin{cases} Ax + (Q-2)y = A+i \quad (i) \\ | (A+i)x - (A-2)y = A \\ Solution \\ D = \begin{vmatrix} A & A-2 \\ A+1 & -(A-2) \end{vmatrix} = (A-2) \begin{vmatrix} A & 1 \\ A+1 & -1 \end{vmatrix} = (A-2)[A(-i) - (A+i)+i] \\ = (A-2)(-A-A-1) = -(A-2)(2A+i) \\ Bx = \begin{vmatrix} A+1 & A-2 \\ A & -(A-2) \end{vmatrix} = (A-2) \begin{vmatrix} A+1 & i \\ A & -1 \end{vmatrix} = (A-2)[(A+i)(-i) - 1\cdotA] \\ = (A-2)(-A-1-A) = -(A-2)(2A+i) \\ By = \begin{vmatrix} A & A+i \\ A+i \end{vmatrix} = A^2 - (A+i)^2 = (A - (A+i))(A+(A+i)) = \\ A+i \end{vmatrix} = (A-A-1)(A+A+i) = -(2A+i) \\ = (A-A-1)(A+A+i) = -(2A+i) \\ Noke that D = 0 \iff 1 - 2)(2A+i) = 0 \iff \\ A = 2 \lor A = 2 \lor A = -1/2 \iff \\ A = A+i \end{vmatrix} = A^2 - (A+i)^2 = A = -1/2 \iff \\ A = A + i \end{vmatrix} = A = A = 2 \lor A = -1/2 \iff \\ A = A = A + i = A = A + i = A = A = A + i = A + i = A = A + i = A = A + i = A + i = A = A + i = A + i = A = A + i = A + i = A = A + i = A = A + i = A + i = A + i = A + i = A = A + i$$

$$\frac{(a)e \ 3}{2} = \frac{1}{4} \ A = -\frac{1}{2}, \ \text{then} \\ D = 0 \ A D_{x} = 0 \ A D_{y} = 0$$
so we have to solve the system explicitly:

$$(1) \in 3 \ (-1/2) \times + (-1/2 - 2)y = -\frac{1}{2} + 1 = 7 \\ (-1/2 + 1) \times - (-1/2 - 2)y = -\frac{1}{2} + 1 = 7 \\ (-1/2 + 1) \times - (-1/2 - 2)y = -\frac{1}{2} = -\frac{1}{2} = 7 \\ (-1/2 + 1) \times - (-1/2 - 2)y = -\frac{1}{2} = -\frac{1}{2} = 7 \\ (-1/2 + 1) \times - (-1/2 - 2)y = -\frac{1}{2} = -\frac{1}{2} = 7 \\ (-1/2) \times - (-1 - 4)y = -1 \ 2 \times +5y = -1 \\ (-1+2) \times -$$

•

EXERCISES (F) Use Cramer's rule to solve the following linear systems: a) $\begin{cases} X-y=0\\ 23x+2y=5 \end{cases}$ () = (x+2y-2) = 02x - y + 3z = 0x + y + z = 2(1,1)(-2, 2, 2)c) $\int x - y + 2 = 3$ d) (2x - y - 2 - w = -1) $\int X - 2y + 2 + W = -2$ $\begin{cases} 2x + y - 32 = 10 \\ 1x + 5y - 92 = 8 \end{cases}$ X+y-2z+w=4(1x+y+2-2w=-8 (no solutions) (-2, -1, -3, 1)e) | x + y + z + w = 2 $\begin{cases}
9x - w + 3z = 9 \\
-x + 2y - 2 + 2w = -5 \\
3x + y - w = 4
\end{cases}$ (x,y,z,w) = (1,0,2,-1)(18) Solve the following Linear systems in terms of the parameter a CIR. a) $\int ax + y + z = 1$ $\chi + ay + z = a$ $\chi + y + oz = a^2$ $\chi + y + oz = a^2$ $\chi + y + oz = a^2$ $ax + y - a^2 = 1$

74d) $\begin{cases} x+y+z = 1+c \\ 1 x+c(1+a)y+z = 1 \\ x+y+c(1+b)z = 1 \end{cases}$ c) $\begin{cases} x + y + z = 1 \\ ax + by + cz = d \\ a^2x + b^2y + c^2z = d^2 \end{cases}$

Method of Gaussian climination · We represent the linear system Ax=b in terms of an augmented matrix M: All Alg ... Ain bi each row represents Azi Azz ... Azn bz an equation : : : : : Ami Amg. - Amu bm] · We say that two augmented matrices M1 and M2 are equivalent (notation: M, NM2) if and only if the corresponding linear systems have the same solution set. ► Properties · The following transformations map an augmented matrix M, to an equivalent augmented matrix M2. 1) Transposition: We can swap any two rows (but not columns) e.g. $\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \end{bmatrix} \notin \begin{bmatrix} a_3 & b_3 & c_3 & d_3 \end{bmatrix}$ $\begin{bmatrix} a_2 & b_2 & c_2 & d_2 \end{bmatrix} \wedge \begin{bmatrix} a_3 & b_3 & c_3 & d_3 \end{bmatrix}$ $\begin{bmatrix} a_3 & b_3 & c_3 & d_3 \end{bmatrix} \notin \begin{bmatrix} a_1 & b_1 & c_1 & d_2 \end{bmatrix}$ 2) <u>Scalar Multiplication</u>: We can multiply any row (but not a column) with a non-zero scalar AER-203.

e.g. $\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix}$ $\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix}$ $\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix}$ 3) Linear combination : We can add to any row (but not a column) any other row multiplied by a non-zero scolar AEIR-203 e.g. $\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \end{bmatrix} \cdot \begin{bmatrix} A & a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \end{bmatrix} \cdot \begin{bmatrix} a_1 & a_2 & b_1 & c_2 \end{bmatrix} \cdot \begin{bmatrix} a_1 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix} \cdot \begin{bmatrix} a_2 & b_3 & c_3 & d_3 \end{bmatrix} \cdot \begin{bmatrix} a_2 & b_3 & c_3 & d_3 \end{bmatrix}$ · Nole that these properties are somewhat different from the corresponding properties of determinants. Dethod ·Using these properties, we try to diagonalize the augmented matrix defering frontional arithmetic as much as possible to the very last step. We work on the augmented matrix one column at a time. • If during this process we get a row of the form 0 0 0 ... ola then: a) If a to, the system is inconsistent and we stop work. b) If a=0, then the row corresponds to an identity and may then be delated from the augmented matrix.

EXAMPLES An <u>overdetermined</u> system: more equations than unknowns a) $\int 2x - y = 1$ $\begin{cases} x+y=3\\ 3x+y=0 \end{cases}$ $\sim \begin{bmatrix} 1 & 1 & 3 \\ 0 & -1+(-2) \cdot 1 & 1+(-2)3 \\ 0 & 1+(-3) \cdot 1 & 0+(-3)3 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 1 & 3 \\ 0 & -3 & -5 \\ 0 & -2 & -9 \end{bmatrix} \cdot \begin{pmatrix} 2 & n & 0 & -6 \\ -10 & -1 & n \\ 0 & 6 & 27 \end{bmatrix} \cdot \begin{pmatrix} -3 & 0 & -6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 1 & | & 3 \\ 0 & -6 & | & -10 \\ 0 & 0 & | & 27 - 10 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & | & 3 \\ 0 & -6 & | & -10 \\ 0 & 0 & | & 17 \end{bmatrix}$ therefore the system has no solution. b) $\begin{cases} x+2+4w+2v=3 & \longrightarrow An undertetermined system: \\ y+2w-V=-1 \\ -x+3y+2z=-2 \end{cases}$ less equations than unknowns.

Solution Since, $\begin{cases} x+2+4w+2v=3 & \int 1x+0y+12+4w+2v=3 \\ y+2w-v=-1 & \implies 0x+1y+02+2w-v=-1 \\ -x+3y+22=-2 & (-1x+3y+22+0w+0v=-2) \\ the corresponding augmented matrix is: \\ 1 & 0 & 1 & 4 & 2 & [3] \cdot 1 \end{cases}$ $\begin{bmatrix} 1 & 0 & 1 & 4 \\ 0 & 1 & 0 & 2 \end{bmatrix}$ 3 -1 |-1 0 3+0 2+1 0+4 0+2 1-2+3 101423 0 1 0 2 -1 -1 0 3 3 4 2 1 (-3) 101 3 4 2 0 1 0 -1 1+(-1)(-3)0 \sim \sim 303126974 \sim 3 -2 5 0

.....

80 EXERCISES (19) Solve the following systems using Gaussian Elimination. a) $\begin{cases} x - 2y = -4 \\ 3x + y = 9 \\ x + 5y = 17 \end{cases}$ b) $\begin{cases} x + 2 = 4 \\ 2x - y + 32 = 9 \\ 3x + y - 22 = -1 \end{cases}$ c) $\begin{cases} x - y - 22 = 6 \\ 3x - 3y - 62 = 1 \\ 3x - 3y - 62 = 1 \end{cases}$ d) $\begin{cases} x + y + w = 4 \\ y + w + 2 = -2 \\ x + w + 2 = 1 \end{cases}$ c) $\begin{cases} x + y + w = 4 \\ y + w + 2 = -2 \\ x + w + 2 = 1 \end{cases}$ (inconsistent) (2+6, 2+3, -22-5, 2) $\begin{cases} x + 2y + 4z = 0 \\ y - 2z = 0 \\ x + 8z = 0 \end{cases}$ e) (-82, 22, 2)

MEE4: Graph Theory. Part 1

82 GRAPH THEORY V Preliminaries Let A be a finite set. We define the following notation: a) [A] is the number of elements of the set A. b) P(A) is the set of all subsets of A, i.e. XEP(A) X CA c) Pa(A) is the set of all subsets of A with a elements, i.e. $X \in P_{\alpha}(A) \iff (X \subseteq A \land |X| = \alpha)$ EXAMPLE For A={a, b, c3, we have: $|A| = |\{a, b, c\}| = 3$ $P(A) = 20, 2a3, 2b3, 2c3, 2a, b3, 2b, c3, 2c, a3, 2d, b, c3}$ $\mathcal{P}_{o}(A) = 2 \emptyset$ $P_1(A) = \{\{a\}, \{b\}, \{c\}\}\}$ $P_{q}(A) = \frac{1}{2} \frac$ $P_3(A) = 2 \{a, b, c\}\}$ Def: Let f: A-B be a mapping from a set A to a set B. We say that fone-to-one (=> YX, Xq EA : (f(Xi) = f(Xq) => XI=Xq)

83 interpretation: A mapping f: A-B is one-to-one if and only if each element of A is mapped to a distinct element of B. V Graphs - Basic definitions Def: A graph G is a triplet $G = (V(G), E(G), \Psi_G)$ that consists of a) a set of vertices V(G) b) a set of edges E(G) c) an incidence mapping 46: E(G) - Pi (V(G)) UP2 (V(G)) that maps every edge to one or two vertices. EXAMPLE V(b) = {1,2,3} $E(G) = \{e_1, e_2, e_3, e_4\}$ $\psi_{0}(e_{1}) = \{1, 2\}$ $\psi_{G}(e_{2}) = 21, 2$ $\psi_{G}(e_{3}) = \{2,3\}$ ÝG(ey) = 333 ← a loop Equivalently, yo can be rewritten as: $\psi_{G} = \{(e_1, \xi_{1,2}, j), (e_2, \xi_{1,2}, j), (e_3, \xi_{2,3}, j), (e_4, \xi_{3}, j)\}$

-> Elementary definitions about graphs Def: Let G be a graph. We say that a) The verlex uEV(G) is incident to the edge eEF(G) if and only if the edge e connects u with itself or with another vertex: VueV(G): VeeE(G): u incident lo e (=> ue Vr. (e) b) The edge EEE(G) is a loop if and only if it connects a vertex with itself. $\forall e \in E(G) : (e loop \iff |\psi_G(e)| = 1)$ Def: Let G be a graph and let UEV(G) be a vertex of G. The degree d(u) of u is given by d(u) = [{e E[G] u E WG(e)] + [{e E[G] u E WG(e) / e loop}] → The degree dlu) is the number of edges eEE(G) to which u is incident, with the loops being counted twice. In the previous example: $d(1) = 2 \wedge d(2) = 3 \wedge d(3) = 3$ Def: Let G be a graph. We define: a) The minimum degree S(G) = min d(u)UEV(C) b) The maximum degree A(G) = max d(u) UEV(G)

85 <u>hemork</u>: It follows from this definition that $\forall u \in V(G) : S(G) \leq d(u) \leq \Delta(G)$ Lemma: (The Handshaking lemma) Let G be a graph. Then: $\sum_{u \in V(G)} d(u) = 2|E(G)|$ Although this is not a formal proof, a simple explanation of the handshaking lemma is that every edge is usually shared by two vertices. As a result, adding up the degrees of all vertices counts the edges twice. Although loops attach to only one vertex, the loop, by definition, adds 2 to the degree of that vertex, so loops are also counted twice

EXAMPLES a) Show that it is not possible to define a graph with 3 vertices of degree 2 and 5 vertices of degree 3. Solution Assume a graph G exists with V(G) = { U, U2, U3, V1, V2, V3, U4, V5} such that $S \forall a \in [3]: d(u_a) = 2$ [Vae [5]: d(va) = 3 It follows that $2|E(\omega)| = \sum_{u \in V(\omega)} d(u) = \sum_{u \in V(\omega)} d$ $= 3.2 + 5.3 = 6 + 15 = 21 \implies$ => |E(G)|= 21/2 = contradiction since |E(G)| is a natural number. It follows that 6 cannot be constructed. b) A graph has twice as many as edges show that there is at least one vertex with degree less than 2. Solution Let G be the graph with 2|E(G)| = |V(G)|. Then: $2|E(G)| = \sum_{u \in V(G)} d(u) \gg \sum_{u \in V(G)} \delta(G) = \delta(G) |V(G)| =$ $= S(G) 2|E(G)| \implies 2|E(G)| \gg S(G) 2|E(G)| \implies$ \Rightarrow $\delta(\omega) \leq 1 \Rightarrow \delta(G) = 0 \ \forall \delta(G) = 1 \Rightarrow$

$$\Rightarrow \exists u \in V(G): (d(u) = 0 \ \forall d(u) = 1)$$

$$\Rightarrow \exists u \in V(G): d(u) < 2.$$

c) Let G be a graph with $\Delta(b) = 1$. Show that the graph cannot have more edges than vertice.
Solution
Since $\Delta(w) = 2 \Rightarrow \forall u \in V(G): d(u) \leq 2$

$$\Rightarrow 2|E(G)| = \sum d(u) \leq \sum \Delta(G) = \Delta(G)|V(G)|$$

 $u \in V(G)$
 $u \in V(G)$
 $= 2|V(G)| \Rightarrow 2|E(G)| \leq 2|V(G)| =)$
 $\Rightarrow |E(w)| \leq |V(G)|.$

•

(2) For the graphs of the previous exercise, list the degrees of each vertex and write $\delta(G)$ and $\Delta(G)$.

(3) Show that it is not possible to creak a graph with 9 vertices such that the degree of every vertex is 3.

(9) Show that it is not possible to create a graph with 7 vertices of degree 3 and 2 vertices of degree 2. (5) Let G be a graph with 10 vertices such that $\delta(G) = \Delta(G) = 2$ How many edges does & have? (6) Let G be a graph with |V(G)| = 8such that $\Delta(G) = 4$. Show that |E(G)| < 36. Let 6 be a graph such that $(\overline{+})$ |V(G)|= |E(G)| Show that 8(G) < 3 Let G be a graph with $\Delta(G) = 4$. (8) Show that $|\mathsf{E}(G)| \leq 2|\mathsf{V}(G)|$ A graph with 4 edges has a vertex (\mathfrak{I}) with degree 4, a vertex with degree 1 and one more vertex. What is the degree of the third vertex?

Types of graphs Simple graphs Def: A graph G is simple if and only if it has no loops and no multiple edges, i.e. G simple (=> { YeEE(G): | YG(e)| = 2 YG is one-to-one EXAMPLE eı G_q : G_1 : 22 2, lz 4 3 é4 2 63: 64: lz e2 C2 Q2 G. is simple. 62, 63, 64 are NOT simple.

2) - hegular graphs <u>Def</u>: Let G be a graph. We say that a) G is regular if and only if all vertices have the same dayree, i.e. G regular \rightleftharpoons $\forall u_1, u_2 \in V(G) : d(u_1) = d(u_2)$ $\rightleftharpoons \exists a \in \mathbb{N} : \forall u \in V(G) : d(u) = a$ b) G is arregular if and only it all vertices have degree equal to a, i.e $G \ \alpha \operatorname{-regular} \iff \forall u \in V(G): d(u) = \alpha$ <u>Remark</u>: Note the negation of this definition: G not regular $\Leftrightarrow \exists u_1, u_2 \in V(G) : d(u_1) \neq d(u_2)$ EXAMPLE $d(1) = d(2) = d(3) = d(4) = 3 \Longrightarrow$ =) $\forall u \in V(G) : d(u) = 3$ =) G 3-regular Also: G is regular.

92(3) · Complete graphs A complete graph is a simple graph such that any two distinct vertices are connected by an edge. The formal definition reads. Def: Let G be a graph. We say that G complete (=> \$ G simple $l \forall u, ug \in VG$: $(u, \neq ug \Rightarrow \exists ee E(G): \psi_{G}[e] = \frac{2}{3}u, ug 3)$ Given the number of vertices n, there is a unique graph such that 2 & complete ||V(G)|=nwhich we denote as kn. EXAMPLES Kg: KL: Kz : Kg: Ky:

4 Null graphs A null graph is a graph with no edges. The formal definition is: Def: Let G be a graph. We say that G is a hull graph $\iff E(G) = \emptyset$ The null graph with n vertices is unique and denoted as Nn. 5) - The path graph Pn Det: We distinguish between the following cases. Case 1: For n=1, we define $V(P_i) = \{u_i\} \land E(P_i) = \emptyset \land \psi_P = \emptyset$ Case 2: For NZ2, we define $\int V(P_n) = 2u_1, u_2, \dots, u_n$ ∫ E(Pn) = 2 e1, e2,.., en-13 (YKE[n-1]: Ypy (eK)= {UK, UK+1} EXAMPLES Pg: -• P3: • P_1 : Py:

-> The cycle graph Cn $\frac{Def}{Case 1}: We distinguish between the following cases:$ $<math display="block">\frac{Case 1}{Case 1}: For n = 1, we have$ $<math display="block">\begin{cases} V(C_1) = \{u_1\} \\ E(C_1) = \{u_1\} \\ \Psi_{C_1}(e_1) = \{u_1\} \\ \Psi_{C_1}(e_1) = \{u_1\} \\ \Psi_{C_1}(e_1) = \{u_1, u_2, \dots, u_n\} \\ E(C_n) = \{u_1, u_2, \dots, u_n\} \\ E(C_n) = \{u_1, u_2, \dots, u_n\} \\ E(C_n) = \{e_1, e_2, \dots, e_n\} \\ \Psi_{K \in [n-1]}: \Psi_{C_n}(e_K) = \{u_K, u_{K+1}\} \\ \Psi_{C_n}(e_n) = \{u_n, u_1\} \end{cases}$ EXAMPLES Cy. (3: C_{S} :

(Z) -> Bipartile graphs • A graph G is called <u>bipartite</u> if and only it its vertex V(b) can be partitioned to two sets Vi and V2 such that every edge of G connects a vertex in Vi with a vertex in Vz. The formal definition is: Def: Let G be a graph. We say that a) & bipartite with vertex partition VI, Va (=) $\left(\begin{array}{c} V_1 \cup V_2 = V(G) \\ V_1 \cap V_2 = \emptyset \end{array} \right)$ $\forall e \in E(G): \{ \forall G(e) \cap V_i \} = \}$ $|\psi_{G}(e) \cap V_{2}| = 1$ B) G bipartite (>) IV, V2 EP(V(G)): G bipartite with vertex partition VI, Ve. · A complete bipartile graph is bipartile with some verlex partition VI.Ve, simple, and every vertex of Vi is connected with every vertex of Ve with exactly one edge. The formal definition is: Def: Let G be a graph. We say that: G complete bipartite with vertex partition Vile (=) (G bipartile with vertex partition VI, Ve

96 • There is a unique groph G such that SG complete bipartite with vertex partition V, V2 [Vil=n / [V2]=m with nimelN*, and it is denoted as knim. EXAMPLES Ku: King: K2.4: K22:

EXAMPLES

a) Evaluate
$$\delta(ka, b)$$
, $\Delta(ka, b)$, and $|E(ka, b)|$ for
the complete bipartite graph ka, b.
Solution
Let $V(ka, b) = V_1 \cup V_2$ with $|V_1| = a$ and $|V_2| = b$.
Each vertex of V_1 connects to all vertices of V_2 , therefore
 $\forall u \in V_1 : d(u) = |V_2| = b$. (1)
Similarly, each vertex of V_2 connects to all vertices of V_1 ,
and therefore:
 $\forall u \in V_2 : d(u) = |V_1| = a$ (2)
It follows that
 $\delta(ka, b) = \min d(u) = \min \{a, b\}$
 $u \in V(ka, b)$
 $\Delta(ka, b) = \max d(u) = \max \{a, b\}$
 $u \in V(ka, b)$
 $2|E(ka, b)| = \sum d(u) = \sum d(u) + \sum d(u) =$
 $u \in V(ka, b) u \in V_1$ $u \in V_2$
 $= |V_1|b + |V_2|a = ab + ba = 2ab \Longrightarrow$
 $\Rightarrow |E(ka, b)| = ab$.

b) Snow that Pro is not regular.
Solution
Let
$$\nabla(P_{10}) = \{u_{1,u}, u_{2}\} \cup V_{0}$$
 with $u_{1,u}$ the codpoint
vertices and $V_{0} = \{V_{1,v}, v_{2}, ..., V_{0}\}$ the inherior vertices.
We note that $d(u_{1}) = 1$ and $d(V_{1}) = 2$. It follows that
 $\exists u_{1,v} \in V(P_{10}): d(u) \neq d(v)$
 $\Rightarrow \forall u_{1,v} \in V(P_{10}): d(u) = d(v)$
 $\Rightarrow P_{10}$ is not regular.
c) Show that if G is regular, then
 $1E(G)1 = \frac{S(G)|V(G)1}{2}$
Solution
Assume G is regular. Then
G regular $\Rightarrow \forall u_{1,v} \in V(G): d(u) = d(v)$
 $\Rightarrow \exists a \in \mathbb{N} : \forall u \in V(G): d(u) = a$
It follows that
 $S(G) = \min d(u) = \min a = a$
 $u \in V(G)$
and therefore:
 $1E(G)1 = \frac{1}{2} \sum_{u \in V(G)} a = \frac{1}{2} \sum_{u \in V(G)} a = \frac{1}{2} \sum_{u \in V(G)} a = \frac{S(G)|V(G)|}{2}$

EXERCISES (10) Draw the following graphs: d) K1,3 g) P4 a) Ky 67 Kg e) kg, 2 h) C3 $\{1, 1, 3, 3, 1\}$ (4) c) K6 (11) Which of the graphs in the previous exercise are regular? (19) For a, b integers aro and bro evaluate the following: a) $\delta(K_a)$ e) $\Delta(K_a)$ i) $|E(K_a)|$ 6) S(Ka, 6) f) A(Ka, 6) j) [E(Ka, 6)] g) A(Pa) K) [E(Pa)] $c) \delta(P_a)$ h) D(Ca) $d) \delta(Ca)$ l) E(Co) [You can check your general answers by testing them when a=2, b=3or a=4, b=3] (13) Show that Karb regular (=) a=b

Show that KS,7 is not regular.

Show that G regular $= \delta(G) = \Delta(G).$

(16) Let G be a bipartite graph with bipartition $V(G) = V_1 \cup V_2$. If $|V_1| = a$ and $|V_2| = a+2$ show that $|E(G)| \leq a^2 + 2a$

Show that we cannot build a bipartite graph with bipartition $V(G) = V_1 \cup V_2$ such that $|V_1| = 4$ and $|V_2| = 3$ and |E(G)| > 14.

V Graph operations We define the following graph operations. D-> Induced subgraph <u>Def</u>: Let G be a graph and let Vo⊆V(G). We define the vertex induced subgraph G[Vo] such that $V(G[V_{3}]) = V_{0}$ $E(G[V_0]) = 2e \in E(G) | \psi_G(e) \subseteq V_0 3$ $\forall e \in E(G[V_{2}]) : \forall G[V_{2}](e) = \psi_{G}(e)$ • Intuitively, the vertex induced subgraph G[Vo] consists of the vertices Vo, the edges that are incident only to vertices in Vo, connected similarly as in G. EX AMPLE G: $C \qquad G[\{a, b, c3]: b]$ Note that the removal of the vertex d removes the two edges that are incident to it.

102(2) -> Vertex subtraction $\frac{\text{Def}}{\text{define fle}} = G[V(G) - V_0]$ Intuitively, G-Vo is the graph obtained by deleting from G, the vertices in Vo and all edges to which there vertices are incident. (3) -> Edge-induced subgraph Def: Let G be a graph and let Eo SE(G). We define the graph G[Eo] such that SV(G[Eo]) = V(G) E(G[Eo]) = Eo $l \forall e \in E_0 : \forall G \in E_0] (e) = \psi_G(c)$ Intuitively, G[Eo] consists of all the vertices of the original graph G but only the edges that belong to Eo.

→ Edge subtraction Def: Let G be a graph and let $EO \subseteq E(G)$. We define the graph G-EO as: $G-EO = G \subseteq E(G) - EO]$ • Note that, unlike vertex subtraction, subtracting edges does not remove vertices under any circumst ances. EXAMPLE G: Ľ C2 63 ei έc G-2e2, e3, e43: G- {eg, ez}: C b eı e, وح ey eς

(5) Graph union A necessary condition for defining the graph union GiVG2 of two graphs Gibz is that Gi, G2 should not share any edges, though they may share vertices. The formal definition is: <u>Def</u>: Let G_{1}, G_{2} be two graphs such that $E(G_{1}) \cap E(G_{2}) = \emptyset$. We define the graph union $G = G_{1} \cup G_{2}$ such that $\int V(G) = V(G_{1}) \cup V(G_{2})$ $\begin{cases} V(G) = V(U), \\ E(G) = E(G_1) \cup E(G_2) \\ \forall e \in E(G) : \Psi_G(e) = \begin{cases} \Psi_G(e) &, if e \in E(G_1) \\ \Psi_G(e) &, if e \in E(G_2) \end{cases}$ EXAMPLE a $G_1 \cup G_2 : b e_2$ $e_1 e_4$

105This definition generalizes to the union of n graphs as follows: $\frac{\text{Def}}{\text{Het}} = \frac{1}{1} \text{Let} \quad G_{1}, G_{2}, \dots, G_{n} \quad \text{be graph, such that} \\ \quad \forall \kappa_{i} m \in [n] : (\kappa \neq m \Longrightarrow E(G_{k}) \cap E(G_{m}) = \emptyset)$ We define the graph $G = G_1 \cup G_2 \cup \dots \cup G_n$ such that: $\begin{pmatrix} V(G) = \bigcup \quad V(G_n) = V(G_1) \cup V(G_2) \cup \dots \cup V(G_n) \\ a \in [n] \end{cases}$ f E(G) = U E(Ga) = E(Gi) V E(Ge) U - ... V E(Gn)a $\in [n]$ $\forall e \in E(G) : \forall k \in [n] : (e \in E(Gk) \Longrightarrow \psi_G(e) = \psi_{Gk}(e)$

) In the previous exercise, let $G_1 = G - \{a_1c_1e_1\}\}$ $G_2 = G[\{a_1b_1e_3\}]$ Draw $G_1 \cup G_2$. [Hint: List $V(G_1), E(G_2), V(G_2), E(G_2)$ first].

In the previous exercise show that G[sa,d3]UG[sb,e3] + G[sa,d,b,e3]

Connected graphs & Walks, trails, and paths Def: Let G be a graph. A walk w is an n-tuple of alternating vertices and edges of the form W= (uo, e, ui, eg, ug, ..., en, un) such that (Va. e[n]vios: uaev(G) J Yac[n]: eacEl() L VacIn]: YG (ea) = { Ua-1, ual · Features of a walk a) Starting vertex: \$ (w) = Uo B) Terminal vertex: t (w) = Un c) Length of walk: l(w) = n d) Verlex function u[w]: [n] 1303 -> V(G) is given by $\forall a \in [n] \cup \{o\} : u[w](a) = ua$ el Edge function $e[W]: [h] \longrightarrow E(G)$ is given by $\forall a \in [n] : e[w](a) = ea$ f) Vertex set V(w) is given by $V(w) = u[w]([n]v_{103}) = \{ua \mid a \in [n]v_{103}\}$ g) Edge set E(w) is given by E(w) = e(w)([n]) = feal ac[n]? • The set of all walks on G is denoted as W(G).

109 EXAMPLE Consider the graph G given by: G: b. 22 وبر a Ue, Then, W= (a, e, a, e, b, ey, c) is a walk with $\beta(w) = \alpha \Lambda t(w) = c \Lambda l(w) = 3$ $V(w) = \{a, b, c\}$ $E(w) = \{e_1, e_2, e_4\}$ We also note that. $u[w](o] = a \wedge u[w](1) = a \wedge u[w](2) = b \wedge u[w](3) = c$ $e[w](1) = e_1 \land e[w](2) = e_2 \land e[w](3) = e_4$ · A trail is a walk in which all edges visited are distinct. A path is a walk in which all edges and vertices visited are distinct. The formal definition is 01 follows: Def: Let G be a graph and let wEWG be a walk. We say that w trail => e [w] is one-to-one w path (>) S w trail Lu[w] is one-to-one.

he call that for a general mapping $f: A \rightarrow B$, we say that f one-to-one $\iff \forall x_1, x_2 \in A : (f(x_1) = f(x_2) \Longrightarrow x_1 = x_2).$ EXAMPLE Consider the graph G given by $e_1 \qquad e_2 \qquad e_3 \qquad c_4 \qquad e_4 \qquad e_4 \qquad e_6 \qquad e_6$ G: and the following walks : $W_1 = (a_1e_{11}a_1, e_2, b)$ $W_3 = (c, e_4, b_7, e_2, a)$ Then, wi is a trail but not a path, and we is a pouth. notation: Let G be a graph and let U, V eV (G) be vertices. Then, we define a) The set T(G) of all trails T(G) = EWEW(G) W trails B) The set P(G) of all paths P(G) = {wew(G) w paths} c) The ret T(G, u-v) of all troids that connect u to v $T(G, u \rightarrow v) = \{w \in T(G) \mid s(w) = u \mid t(w) = v\}$ d) The set P(G, UNV) of all paths that connect u to V $P(G, u = v) = \{ w \in P(G) | f(w) = u / t(w) = v \}$

· Note that W(G) is an infinite set (e.g. you can go back and forth between two vertices indefinitely) but T(6) and P(G) are both finite sets, because ai you construct a trail or a path you neve inevitably run out of edges, since every edge can be used only once. Connected graphs $\frac{\text{Def}: \text{Let } \mathcal{G} \text{ be a graph. We say that}}{\mathcal{G} \text{ connected } (=) \forall u, v \in V(\mathcal{G}): (u \neq v \Rightarrow) |P(\mathcal{G}, u \rightarrow v)| \ge 1)}$ interpretation: A graph G is connected if and only if for any two distinct vertices u.v. there is out least one path from le to V. • The following graphs are obviously connected. a) Complete graph kn B) Path graph Pn c) Cycle graph Cn d) The complete bipartile graph Km,n • It is useful to note that: G connected => tueV(G): d(u)>0

· Graph components

Thm: Let G be a graph which is not connected. Then, the vertex set V(G) can be partitioned to n subsets V. Vg. Vn such that: $(\forall a, b \in [n]: (a \neq b \Longrightarrow \forall a \cap \forall b = \beta)$ $\frac{1}{2}$ $\overline{V}_1 \cup \overline{V}_2 \cup \cdots \cup \overline{V}_n = \overline{V}(c)$ | Vae[n]: G[Va] connected $\int G[V_1] \cup G[V_2] \cup \cdots \cup G[V_n] = G$

• The connected subgraphs G[Vi], G[V2], ..., G[Vn] are the components of G. • We denote w(G) = n to be the number of components of G. · An obvious consequence of the above is that

G connected () W(G) = 1 G not connected (=) w(G)>1.

EXAMPLE

Consider the graph & given by: G: 6.

This graph has two components $G = G[\{a, b\}] \cup G[\{c, d, e\}]$ and thus w(G)=q. Note that if we attempt a finer vertex partition, such as $G' = G[\{a, b\}] \cup G[\{c, d\}] \cup G[\{e\}]$ we obtain the graph G1 = G-Ede3 = G <u>G': b</u> C, 0 Bridges Thm: Let G be a graph. Then, we have: $\forall e \in E(G): w(G) \leq w(G-\xi e \overline{s}) \leq w(G) + 1$ interpretation: For any graph G, removing one edge may or may not increase the number of components l., g • This theorem cannot be generalized to the deletion of vertices. Def: Let 6 be a graph and let $e \in E(G)$. We say that e bridge of $G \rightleftharpoons W(G - 2e^2) > W(G)$.

interpretation: An edge ccE(G) is a bridge of G if and only if removing the edge e from the graph G increases the number of components in the resulting graph. E-XAMPLE Consider the graph G given by: G: ar The edges aw and be are bridges of G, because [G-{aw}] = G[{w}]UG[{a,b,c,d,x,y,z}] => [G-{bc}] = G[{a,b,z,w}]UG[{c,d,x,y}] $\Rightarrow) \int W(G-\frac{1}{2}aw^{2}) = 2 \times W(G) \Rightarrow$ $[w(G - \{bc\}) = 2 > w(G)$ =) aw, bc bridges of G. Vet: Let G le a graph. We say that G strongly linked () YeEELG : G-Se3 connected G weakly linked () & G connected (JeEEG): G-Sez not connected

EXERCISES Consider the following graph 0 øl C e. i G List the components of the following a) graphs: $G_4 = G - \{e\}$ $G_1 = G - \{c\}$ $G_5 = G - \frac{1}{2}he, gf$ $G_6 = G - \frac{1}{2}di$ $G_2 = G - \{d\}$ $G_3 = G - 213$ b) What are the bridges of the graph G? Consider the following graph (9.3) d h

of the following graphs: Gy=G-Ebh, bg 3 a) List the components $G_1 = G - 3673$ $G_S = G - \{h\}$ 6q=6-2q3 G3=G-Z6,g3 66=6-243 8) What are the bridges of the graph 6? (24) Let 6 be a connected graph and let eE(G). Show that $\omega(G-\{e_3\}) \leq 9$

det $(L_G - AI) = A^{w(G)} f(A)$ with $f(o) \neq 0$

V Groph connectivity Edge connectivity A(G) Pef: Let G be a graph and let EoGELG. We say that Eo is an edge cutset of G => <>>> G-Eo not connected $[\forall E, e^{\gamma}(E_0) : (E, \neq E_0 \Longrightarrow G - E, connected)]$ • The smallest number of edges needed to construct a cutset to of G is the <u>edge-connectivity</u> A(G) of G. More formally, AG = min 2 | Eol | Eo EP(E(G)) / Eo edge cut-set of GB Verlex connectivity K(G) Pef: Let G be a graph and let $V_0 \in V(G)$. We say that Vo is a vertex cutset of $G \in \mathcal{T}$ • The smallest number of vertices needed to construct a vertex cutset Vo of G is the vertex connectivity K(G) of G

119K(G) = min { |Vol | Vo e ? (V(G)) / Vo verlex cutset of G} 2. Note that 6 not connected (=> A(G) = K(G) = 0 G weakly linked () A(6) = 1 G strongly linked > 2(G)>1 A property of connectivity hecall that S(G) is the minimum degree of G: S(G) = min { d(u) | u e V(G)} It can be shown that: Thm: Let G be a graph. Then: G connected \Longrightarrow $K(G) \leq A(G) \leq S(G) \leq 2|E(G)|$ |V(G)|

EXAMPLE Calculate the verlex connectivity K(6) and edge connectivity A (c) for the following graph G: G: l Solution First we note that $d(a) = d(b) = d(c) = d(d) = d(e) = d(f) = 3 \Longrightarrow$ $\rightarrow \delta(G) = \min d(u) = 3 \Rightarrow \kappa(G) \leq \delta(G) = 3 \Rightarrow \kappa(G) \leq 3$ 457(6) $\Rightarrow K(G) = 0 V K(G) = 1 V K(G) = 2 V K(G) = 3.$ Since 6 connected => K(G)>0. · Try deleting one vertex a) For G-Zaz we have: d f b which is connected. G-263, G-223 are similarly connected.

B) For G- Ed3 we have: which is connected, and by symmetry, G-zez and G-zfz are also connected. 6 It follows from (a) and (b) L that K(6)>1. · Try deleting two vertices a) For G-la, B3 we have: which is still connected. By symmetry, G- EB, 3 and G-Ec, as are also connected. B) For G- 2a, d3 we have: which is still connected. By symmetry, G-36,e3 and G-ic, fi are also connected c) For G-{a,e3 we have: which is still connected. By symmetry, G-{a,f3, G-26,d3, G-16, f3, G-2e, d3, G-2c, e3 are also connected.

122d) For G-2d, f3 we have: which is connected, and by symmetry 6-3 d, e3 and 6-3e, f3 are also connected. b e From (a), (B), (c), (d) it follows that K(G)>2. Since $2 < k(6) \leq \delta(6) = 3 \implies k(6) = 3$ and since $\kappa(\omega) \leq \lambda(\omega) < S(\omega) \Rightarrow 3 \leq \lambda(\omega) \leq 3$ $=) \lambda(6) = 3$

EXERCISES

(25) Consider the complete graph Ka Let ueV(ka). Show a) Show that ka- 243 = ka-1 B) Show that $k(ka) = 2(ka) = \delta(ka) = a - 1$

(26) Similarly, for the complete bipartile graph Ka, & show that $\kappa(\kappa_{\alpha,\beta}) = \Im(\kappa_{\alpha,\beta}) = \Im(\kappa_{\alpha,\beta}) = \min\{\alpha,\beta\}$

(27) Show that a) K(Pa) = A(Pa) = S(Pa) = 1b) $K(Ca) = A(Ca) = \delta(Ca) = 2$

(28

Calculate K(G) and 2(G) for the following graphs:

V Eulerian graphs The Eulerian problem: Given a connected graph G, is there a walk that can visit every edge of the graph once and only once and return to the storting vertex at the end? If the answer is yes, we say that G is an Eulerian graph and the corresponding walk is on Eulerian trail. Def: Let G be a connected graph. We say that G Eulerian \in $\exists W \in T(G) : E(W) = E(G) \land S(W) = t(W)$ EXAMPLE ۹. в The graph kere: is Eulerian with Eulerian frail: W= (a, ac, c, cb, b, bl, d, da, a) Euler solved the Eulerian problem by introducing the definitions for graph, vertex degree, and proving the following theorem: <u>Thm</u>: Let G be a connected graph. Then: G Eulerian (=> YuEV(G): IKEIN*: d(u) = 2K

والمتحدين والمعادي والمعادية والمتحد والمعادية و

127G connected => YueV(G): d(u)>0 > a>0/b>0/c>0. => a>1/b>1/c>1 It follows that atbtc = 4 = $(a, b, c) \in \{(1, 1, 2), (1, 2, 1), (2, 1, 1)\}$ and therefore: a odd V b odd V c odd -> => G not Eulerian. β

(30) Show that a) ka Eilerian (=> a is old b) Kab Eulerion a even 1 b even c) HaEIN: Ca>2 -> Pa not Eulerian) d) VaEN: (a>3 => Ga Eulerian) 30 A connected Eulerian graph has 3 vertices and 5 edges. Show that if one vertex has degree 4, then another vertex must have degree 2 (32) A connected graph with 4 edges and 4 vertices has 2 vertices of degree 2 Show that a) G not Eulerian -> I u EV(G): dlu1 = 3. b) G Eulenan -> G regular. (33) Show that a connected regular graph with an odd number of rertices is always Eulerian (34) Show that a connected regular graph with all number of edges and whose number of vertices is a multiple of 4 is never Eulerian.

V Hamiltonian grophs

Hamilton's Problem : Let G be a connected graph. Can we construct a walk that visits every reviex of the graph once and only once, without using any edge more than once, and then close the walk with a direct edge from its terminal point back to its initial point? If yes, then we say that the graph is a Bamiltonian graph, the walk is a Hamiltonian path, and the walk together with the dosing edge is a Hamiltonian circuit.

Recall that any walk where no edges or rertices are repeated is a path. The Hamiltonian circuit as a whole is not a path since the initial vertex is repeated once, as a terminal vertex. Thus, the reason for the distinction between the Hamiltonian path and the Hamiltonian circuit. Based on the obore, we give the following definition:

131Def: Let 6 be a connected graph. We say that G Hamiltonian (=) $\iff \exists u_1, u_2 \in V(G) : \exists w \in P(G, u_1 - u_2) :$ $: \ u_1 \neq u_2 \land V(w) = V(G)$ $I \exists e \in E(w) : \psi_{G}(e) = \{u_1, u_2\} \land e \notin E(w)$ Here, w is the Hamiltonian path, u, the initial verlex, up the terminal vertex and e the closing edge. · Note that it is not necessary for the Hamiltonian circuit to visit all the edges. Criteria for the Hamiltonian property Noone has successfully solved the Hamiltonian problem by proving a practical necessary and sufficient condition. We have however the following partial results: (1) A nocessary condition Thm: Let G be a connected graph. Then: G Hamiltonian => ¥ Vo EP (V(G)): (Vo ≠ V(G) => W(G-Vo) < 1Vol) Intuitively, if the graph G is Hamiltonian, then it we subtract the vertices in Vo CV(G), then the resulting

graph G-Vo cannot have more components than the number of vertices in Vo. • The contrapositive statement of this theorem can be used to show that a graph is not Hamiltonian (avollary: Let G be a connected graph. Then (∃ Vo ∈ P(V(G)): (Vo ≠ V(G) ∧ w(G-Vo)> (Vo)) ⇒ G not Hamiltonian In general, proving a statement of the form $p \Rightarrow q$ also proves the contrapositive statement $\overline{q} \Rightarrow \overline{p}$. Negations can be calculated according to the following rules of Boolean logic: Stotement It's negation ∀xeA:p(x) $\exists x \in A : p(x)$ VxeA: p(x) JXEA: p(x) p Vq plg 方人言 pVq $p \Rightarrow q$ plg pYq PE)9 plg ptog

133EXAMPLE Show that the graph 6: α d is not Hamiltonian. Solution Subtracting the vertex d gives G-ZdZ: _b e 7 a 3 It follows that $G - \frac{1}{2}d^{3} = G\left[\frac{1}{2}a, b, c^{3}\right] \cup G\left[\frac{1}{2}e, f, g^{3}\right] \Longrightarrow$ $\implies \omega(G - \frac{1}{2}d^{3}) = 2 > 1 = |\frac{1}{2}d^{3}| \Longrightarrow$ $\Rightarrow \omega(6-\frac{2}{3}) > |2d3| \Rightarrow$ -> G not Houndhonian.

Ore's theorem (2) Thim: Let G be a grouph. Then: (G simple and connected L |V(G) 1≥3 => G is Hamiltonian $V(G) \ge 3$ $\forall u, v \in V(G) : (u, v not adjacent =)$ $\Rightarrow d(u) + d(v) \ge |V(G)|$ EXAMPLE Use Ore's theorem to show that G: b is Hamiltonian Solution We note that 6 is simple and connected. $|V(\omega)| = |\{a, b, c, d, c\}| = 5 > 3$ $d(a) + d(d) = 2+3 = 5 \ge |V(G)|$ $d(a) + d(e) = 2+3 = 5 \ge |V(G)|$ $d(b) + d(c) = 3 + 3 = 6 \ge |V(c)|$

(3) -> Dirac's theorem Thm: Let G le a graph. They $\begin{cases} G \text{ simple and connected} \\ |V(G)| > 3 \implies G \text{ is Hamiltonian} \\ S(G) > (1/2) |V(G)| \end{cases}$ Proof Assume that SG simple and connected (1) 1 IV(G) 23 (2) $l S(G) \geq (1/2) | V(G) |$ (3) Let uve V(6) be given and assume that uv not adjacent. Then: $d(w) + d(v) \ge S(G) + S(G) = 2S(G) \ge 2[(1/2)|V(G)|] = |V(G)| \Longrightarrow$ => d(u) + d(v) > /V(G)/ It follows that Hu, v ∈ V(G): (u, v not adjacent => d(u) + d(v) > (V(G))) (4) From Eq. (1), Eq. (2), Eq. (4), via Ore's theorem, it follows that G is Hamiltonian (4) -> Bipartile graphs Thin: Let G be a graph. Then SG connected and bipartite => G not Hamillonian | $\exists k \in \mathbb{N} : |V(G)| = 2kti$

Proof Assume that S G connected and bipartile L = KEN : |V(G) = 2K+1 Since, G is bipartite, we droose VI EV(G) and Vg EV(6) such that $(V_1 \cap V_2 = p \land V_1 \cup V_2 = V(G)$ To show on contradiction, assume that G is Hamiltonian. Then, a Hamiltonian circuit must alternate between vertices in V. and vertices in Ve. Because each vertex can only be visited once, it follows that $|V_1| = |V_2| \Longrightarrow$ $\Rightarrow |V(G)| = |V_1| + |V_2| = |V_1| + |V_1| = 2|V_1| \Rightarrow$ => [V(G)] is even => [V(G)] not odd which contradicts the assumption $\exists k \in N : |V(G)| = 2k+1$ It follows that G is not Hamiltonian.

EXERCISES Show that the following graphs are Homiltonian (35 l) e b b a) d e **d**) c) ٩ a e b d. C Show that the following graphs are not Hamiltonian (36) la) a. q ð e e d h

MEE5: Eigenvalues and eigenvectors

ELGENVALUES AND ELGENVECTORS

V Eigenvalues and Eigenvectors · Let A ∈ Mnn (R) be a square matrix. We say that $A \in \mathbb{C}$ is an eigenvalue of A with * eigenvector $x \in Mni(\mathbb{C})$ if and only if $A \times = A \chi$. with x = 0 • With every eigenvalue 2 we associate an <u>eigenvector space</u> Eg(A) which cousists of all vectors x that are eigenvectors to the eigenvalue A. Thus: $E_{A}(A) = \{ x \in Mul(c) | Ax = Ax \}$ + How to find the eigenvalues • A eigenvalue of A ⇔ det (A-AI) = 0
$$= \begin{vmatrix} 2-\lambda & -1 & 1 \\ 0 & 3-\lambda & -1 \\ 2 & 1 & 3-\lambda \\ \hline P & 3-\lambda \end{vmatrix}$$

$$= \begin{vmatrix} 2-\lambda & 2-\lambda & 1 \\ 0 & 0 & -1 \\ 2 & (3-\lambda)^{2}+1 & 3-\lambda \end{vmatrix}$$

$$= -(-1) \begin{vmatrix} 2-\lambda & 2-\lambda \\ 2 & (3-\lambda)^{2}+1 \end{vmatrix} = (2-\lambda) \begin{vmatrix} 1 & 1 \\ 2 & (3-\lambda)^{2}+1 \end{vmatrix}$$

$$= (2-\lambda) [(3-\lambda)^{2} + 1 - 2] = (2-\lambda) [(3-\lambda)^{2} - 1]$$

$$= (2-\lambda) (3-\lambda-1) (3-\lambda+1) = (2-\lambda) (2-\lambda) (4-\lambda).$$

$$A \text{ eigenvalue of } A \notin A \notin A \notin A \notin A \notin A \notin A = 1$$

$$A \text{ eigenvalue of } A \notin A \notin A \notin A = 4$$

$$A = 2 \text{ or } A = 4$$

$$A = 2 \text{ or } A = 4$$

.

> How to find the eigenvectors For each eigenvalue 2 we use Gaussian Elimination to solve the equation $(A - \partial I) \times = 0$ The solution space of this equation coincides with the eigenvector space Eg (A). example In the previous example: For 2= % $M \sim \begin{bmatrix} 2-2 & -1 & 1 & 0 \\ 0 & 3-2 & -1 & 0 \\ 9 & 1 & 3-2 & 0 \\ \end{bmatrix} \sim n$

$$\underline{EXAMPLES - THEORETICAL}$$

a) het A \in Mn(R) be a matrix with $A^2 = 5A - 6I$. Show
that
A eigenvolue of $A \Rightarrow A = 2$ V $A = 3$.
Solution
Let $A \in A(A)$ be an eigenvalue of A with $x = 2$ corresponding
eigenvector. It follows that
 $Ax = Ax$ and
 $A^2 x = (AA)x = A(Ax) = A(Ax) = A(Ax) = A(Ax) = A^2x$.
and therefore:
 $A^2 = 5A - 6I \Rightarrow A^2 - 5A + 6I = 0 \Rightarrow$
 $\Rightarrow (A^2 - 5A + 6I)x = 0x = 0$ (1)
and $(A^2 - 5A + 6I)x = Ax - 5Ax + 6Ix = A^2x - 5Ax + 6x =$
 $= (A^2 - 5A + 6)x = 0 \Rightarrow A^2 - 5A + 6Ix = A^2x - 5Ax + 6x =$
 $= (A^2 - 5A + 6)x = 0 \Rightarrow A^2 - 5A + 6Ix = A^2x - 5Ax + 6x =$
 $= (A^2 - 5A + 6)x = 0 \Rightarrow A^2 - 5A + 6Ix = A^2x - 5Ax + 6x =$
 $= (A^2 - 5A + 6)x = 0 \Rightarrow A^2 - 5A + 6Ix = 2x - 5Ax + 6x =$
 $= (A^2 - 5A + 6)x = 0 \Rightarrow A^2 - 5A + 6Ix = 2x - 5Ax + 6x =$
 $= (A^2 - 5A + 6)x = 0 \Rightarrow A^2 - 5A + 6Ix = 2x - 5Ax + 6x =$
 $= (A^2 - 5A + 6)x = 0 \Rightarrow A^2 - 5A + 6Ix = 2x - 5Ax + 6x =$
 $= (A^2 - 5A + 6)x = 0 \Rightarrow A^2 - 5A + 6Ix = 2x - 5Ax + 6x =$
 $= (A^2 - 5A + 6)x = 0 \Rightarrow A^2 - 5A + 6Ix = 2x - 5Ax + 6x =$
 $= (A^2 - 5A + 6)x = 0 \Rightarrow A^2 - 5A + 6Ix = 2x - 5Ax + 6x =$
 $= (A^2 - 5A + 6)x = 0 \Rightarrow A^2 - 5A + 6Ix = 2x - 5Ax + 6x =$
 $= (A^2 - 5A + 6)x = 0 \Rightarrow A^2 - 5A + 6Ix = 2x - 5Ax + 6x =$
 $= (A^2 - 5A + 6)x = 0 \Rightarrow A^2 - 5A + 6Ix = 2x - 5Ax + 6x =$
 $= (A^2 - 5A + 6)x = 0 \Rightarrow A^2 - 5A + 6Ix = 2x - 5Ax + 6x =$
 $= (A^2 - 5A + 6)x = 0 \Rightarrow A^2 - 5A + 6Ix = 0 \Rightarrow (A - 2)(A - 3) = 0$
 $\Rightarrow A = 2 = VA = 3$

.

146

•

.

EXERCISES

(1) Find the eigenvalues and corresponding eigenvector spaces for the following a) $A = \begin{vmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 1 & 7 \end{vmatrix}$ $(\lambda = 1 \longrightarrow t(0,0,1))$ 6) $B = \begin{bmatrix} 9 & 1 & 3 \\ 1 & 9 & 3 \\ 3 & 3 & 9 \end{bmatrix} \begin{array}{c} (A = 1 \longrightarrow t(1, -1, 0) \\ A = 9 \longrightarrow t(3, 3, -1) \\ A = 9 \longrightarrow t(1, 1, 6) \end{array}$

Lanswers can be confirmed by matlab or octave]

- (7) Let $A \in M_n(\mathbb{R})$ with $A^2 + 3A = -2I$. Show that if: λ eigenvalue of $A \Longrightarrow \lambda = -1 \vee \lambda = -2$.
- (8) Let $A \in Hn(IR)$ with $A^{-1} = 2I A$. Show that: A eigenvalue of $A \Longrightarrow A = 1$.

V Chovactevistic polynomial Thm: Let A & Mn(lk) be a square matrix. Then the determinant det (A-AI) simplifies to a polynomial of the form det (A-AI) = (-1)^MA^M + Cn-1A^{M-1} + ... + CLA + Co • We call the polynomial obtained by expanding det(A-AI) the dravacteristic polynomial of A. Proof Let $\sigma \in Sn$ be the do-nothing permutation such that $\forall a \in [n]: \sigma_0(a) = a$ Then, we have $S(\sigma) = 1$, and therefore $det(A-AI) = \sum_{\sigma \in SnL} S(\sigma) TT (A - AI) a, \sigma(a)$ $= \frac{\pi}{\alpha} \left(A - AI \right) a_{1} \sigma(\alpha) + g(A)$ = $\prod_{\alpha=1}^{\infty} (A - AI) \alpha \alpha + g(A)$ $= \prod_{\alpha=1}^{n} (A_{\alpha\alpha} - \lambda) + g(\lambda) \qquad (1)$ with $g(\lambda) = \sum_{\sigma \in \$n - \$\sigma_{\sigma}\$} \left[\$(\sigma) \stackrel{n}{\text{T}} (\Lambda - \partial I) a, \sigma(a) \right]$ (2)

From Eq.(1), the highest-order term from the first contribution is (-A)n = (-1)nAn. We also note that for $\sigma \neq \sigma_0$, the products that appear in g(A) involve at least two non-diagonal elements, since σ is at least one transposition away from σ_0 , and therefore $\deg(g(A)) \leq n-2$. It follows that g(A) does not contribute additional An terms. The conclusion follows D • he call that according to the fundamental theorem of algebra, a polynomial Vx eth: p(x) = an xh + an ... xh + t ... + a, x + a. has zeroes X, 1 × 2, ..., xn EC, and it can be factored $p(x) = a_n (x - x_i)(x - x_2) \cdots (x - x_n) = a_n \prod_{l=1}^{n} (x - x_l)$ · Combining the previous result with the fundamental theorem of algebra gives; the following theorem: Thm: Let A ∈ Mn(R) be a square matrix and let Aidq,..., An ∈ C be the eigenvolves of A. Then, det A = Aidq.... An = TT da a∈[n] P. P Proof The eigenvalues Ai, da, ..., du EC are the n Zeroes of the characteristic polynomial p(d) = det (A-dI).

Using the fundamental theorem of algebra, it follows that $det (A - AI) = (-1)^{n}A^{n} + C_{n-1}A^{n-1} + \dots + C_{n-1}A + C_{n-1}A^{n-1}$ $= (-1)^{n} TT (1 - 1a) = TT (1a - 1a) \Rightarrow$ a e[n] a e[n] a e[n] $\Rightarrow \det A = \det(A - OI) = TT (\partial_a - O) = TT \partial_a D$ $a \in [n]$ $a \in [n]$ Trace of a matrix Def: Let A Mn (IR) be a square moutrix. We define the trace of A as: tr(A) = 5 Aaa = Ay + Agg + ... + Ann We can now show that: Prop: Let AEMn (R) le a matrix with eigenvalues A1, A2,..., An E C. Then, we have: $tr(A) = \hat{T} \partial_{\alpha} = \lambda_1 + \lambda_2 + \dots + \lambda_n.$ a=1 Proof We note that n $det(A-2I) = \prod_{\alpha=1}^{\infty} (a_{\alpha}-a) =$ $= (-1)^{n} \lambda^{n} + (\sum_{n=1}^{n} \lambda_{a}) (-\lambda)^{n-1} + \dots + c_{n} \lambda + c_{n}$

$$= (-1)^{n} A^{n} + (-1)^{n-1} \left(\sum_{\alpha=1}^{n} A_{\alpha} \right) A^{n-1} + \dots + c_{1} A + c_{0}$$

thus the coefficient c_{n-1} of the A^{n-1} torm is
 $c_{n-1} = (-1)^{n-1} \left(\sum_{\alpha=1}^{n} A_{\alpha} \right)$
We also note, from Eq.(1) in the proof of the first
theorem of this section that we have:
 $det(A-AI) = \prod_{\alpha=1}^{n} (A_{\alpha\alpha} - A) + g(A) =$
 $= (-1)^{n} A^{n} + (-1)^{n-1} \left(\sum_{\alpha=1}^{n} A_{\alpha\alpha} \right) A^{n-1} + \dots + d_{1} A + d_{0} + g(A)$
 $= (-1)^{n} A^{n} + (-1)^{n-1} tr(A) A^{n-1} + \dots + d_{1} A + d_{0} + g(A)$
 $with deg(g(A)) \leq n-2$. It follows that $g(A)$ does not
contribule to the coefficient of A^{n-1} and thus
 $c_{n-1} = (-1)^{n-1} tr(A)$
We conclude that
 $(-1)^{n-1} tr(A) = (-1)^{n-1} \left(\sum_{\alpha=1}^{n} A_{\alpha} \right) \Rightarrow tr(A) = \sum_{\alpha=1}^{n} A_{\alpha}$

.

$$\frac{\text{EXAMPLES}}{\text{a}}$$

a) Let $A = \begin{bmatrix} a+3 & 1\\ g_a & 2 \end{bmatrix}$ and let $A_1, A_R \in \mathbb{C}$ be the
eigenvalues of A . Find all a et A such that $\frac{1}{A_1^2} + \frac{1}{A_2^2} = 1$
 $\frac{1}{A_1^2} = \det A = \begin{bmatrix} a+3 & 1\\ g_a & g \end{bmatrix} = g(a+3) - 1 \cdot g_a = ga+6 - ga=6$
and
 $A_1 + A_2 = \frac{1}{A_2} + \frac{1}{A_2^2} = \frac{(A_1 + A_2)^2 - 2(A_1A_2)}{(A_1A_2)^2} = \frac{(A_1 + A_2)^2 - 2(A_1A_2)}{(A_1A_2)^2} = \frac{(1 + A)^2 - 2\det A}{A_1^2 A_2^2} = \frac{(A_1 + A_2)^2 - 2(A_1A_2)}{(A_1A_2)^2} = \frac{(1 + A)^2 - 2\det A}{A_1^2 A_2^2} = \frac{(a+5)^2 - 2 \cdot 6}{(A + A)^2} = \frac{(a+5)^2 - 12}{36}$
and therefore:
 $\frac{1}{A_1^2} + \frac{1}{A_2^2} = 1 \iff \frac{(a+5)^2 - 12}{36} = 1 \iff (a+5)^2 - (2=36)$
 $\iff (a+5)^2 = 12 + 36 \iff (a+5)^2 = 48 = 16 \cdot 3 = 4^2 \cdot 3$
 $\iff a+5 = 4\sqrt{3}$ V $a+5 = -4\sqrt{3}$ \ll

(=) a= -5+4√3 V a= -5 - 4√3

EXERCISES

(9) Let If A. 22, 23 are the eigenvalues of A, find xeasuch that a) 2,22 23 = 1 $b) A_{1} + A_{2} + A_{3} = 4$ (10) Let $A = \begin{bmatrix} x+1 & 9x \\ 3 & x-1 \end{bmatrix}$ with eigenvalues Ai, 2g. Find XEC such that a) $\lambda_1 + \lambda_2 = 3$ $\frac{1}{2} + \frac{1}{2} = 1$ c) $\lambda_1^2 + \lambda_2^2 = 1$ (Hint: $a^2 + b^2 = (a+b)^2 - 2ab$) (11) Let A= a 1 1 1 with eigenvalues λ_1, λ_2 . Find $a \in \mathbb{C}$ such that $\lambda_1^3 + \lambda_2^3 = 0$. $(\text{Hint}: (a+b)^3 = (a^3+b^3) + 3ab(a+b))$

The following problems use a) det (AB) = det (A) det (B) b) det(I) = 1.

- Let A ∈ Mnn (IR) be a matrix and let (19) B = P-1 AP with PEHnu (IR) a non-singular matrix. Show that A, B have the same eigenvalues.
- Let A, B E Mun (IR) with A non-singular. (13) Show that AB and BA have the same eigenvalues.

(14) Let A E Mag (IR) be a 2×2 matrix. IF A is non-singular, show that

$$tr(A^{-1}) = tr(A)$$

$$det(A)$$

(15)

(See exercise (6))
Let
$$A \in M_{33}(IR)$$
 be a 3×3 non-singular
matrix with eigenvalues $A_{1,1}A_{2,1}A_{3}$ that
satisfy
 $A_{1}^{2} + A_{2}^{2} + A_{3}^{2} = 1$
Show that
 $tr(A-1) = (tr(A)+1)(tr(A)-1)$
 $9 + 4 + A$

Cauley-Hamilton theorem Thim: Let AEMULIR) be a square matrix we with det (A-AI) = (-1)ⁿ Aⁿ + Cn-1 Aⁿ⁻¹ + -... + C, A + Co Then A satisfies $(-1)^{n}A^{n} + c_{n-1}A^{n-1} + \cdots + c_{1}A + c_{0}I = 0$ ▶ <u>Method</u>: The Cayley-Itamilton theorem provides a second method for calculating the matrix inverse A⁻¹ as shown in the following example EXAMPLE Given the matrix $A = \begin{bmatrix} 5 & 4 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & a \end{bmatrix}$ use the Cayley-Hamilton theorem to write A-1 in terms of A. Solution Since, $det(A-AI) = \begin{vmatrix} 5-A & 4 & 0 \\ 1 & 2-A & 0 \\ \hline 1 & 2 & 9-A \end{vmatrix} =$

= (2-3) | 5-3 | 4 | = 1 | 2-3 | = 1 | 2-3 | 5- $= (2-\lambda) [(5-\lambda)(2-\lambda) - 4.1] =$ = (2-3)(10-53-23+32-4) = $= (2-3) (3^2 - 73 + 6) =$ $= 2\lambda^{2} - 14\lambda + 12 - \lambda^{3} + 7\lambda^{2} - 6\lambda =$ $= -3^{3} + (2+7)^{2} + (-14-6)^{2} + 12$ = - 23 +922-202+12 => $\Rightarrow -A^3 + 9A^2 - 20A + 12I = 0 \Rightarrow$ $\Rightarrow A^3 - 9A^2 + 20A = 121 = 3$ $\Rightarrow A(A^2 - 9A + 20I) = |2I = 3$ $\Rightarrow A \left[\frac{1}{19} \left(A^2 - 9A + 20I \right) \right] = I \Rightarrow$ $\rightarrow A^{-1} = \frac{1}{10} (A^2 - 9A + 20I).$ ► <u>Method</u>: We can also use the Cayley-Hamilton theorem to write higher powers. An in terms of a few powers of A. EXAMPLE Given the matrix $A = \begin{bmatrix} 1 & 0 \end{bmatrix}$ Show that YnEW-20,13: An = nA - (n-1)I.

$$\frac{500}{4}$$

$$\frac{500}{4}$$

$$\frac{1}{4}$$

160 EXERCISES (6) For the following matrices, write A-1 and A3 in terms of A and I. a) $A = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad B) A = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$ $c = \begin{bmatrix} 0 & 1 \end{bmatrix} d = \begin{bmatrix} -1 & 0 \end{bmatrix}$ (7) For the following matrices, write A-1 and A4 in terms of I, A, A2. a) $A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ $A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ c) $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ $A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

.

•

with initial condition :

•

$$y_{1}(0) = b_{1}, y_{2}(0) = b_{2}, \dots, y_{n}(0) = b_{n}$$
If we define
$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{2n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}, b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix}, y|t| = \begin{bmatrix} y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n}(t) \end{bmatrix}$$
then the system can be rewritten as:
$$\begin{bmatrix} \frac{d_{11}(t)}{dt} = A_{11}(t) + f(t) \\ \frac{d_{11}}{dt} \\ y(0) = b \end{bmatrix}$$
The solution to this system is based on the matrix exponential.
$$f \rightarrow The matrix exponential.$$
• Let A & Mun (IR) be a square matrix.
The exponential of A is defined as
$$exp(A) = \sum_{n=0}^{+\infty} \frac{1}{n!} A^{n}$$

with
$$0! = 1$$

 $n! = n(n-i)(n-2) \cdots 3 \cdot 2 \cdot 1$
This generalizes the identity
 $e^{\chi} = \sum_{n=0}^{+\infty} \frac{\chi^n}{n!}$

- The matrix exponential exp(A) converges
 for all matrices A.
- Properties
 - a) $\frac{d}{dt} \exp(tA) = A \exp(tA) = \exp(tA)A$
 - 6) $[exp(A)]^{-1} = exp(-A)$
 - c) $AB = BA \implies exp(A+B) = exp(A)exp(B)$
 - d) $\frac{dy(t)}{dt} = Ay(t) \rightarrow y(t) = exp(tA)y(0)$
 - e) $exp((t_1+t_2)A) = exp(t_1A) exp(t_2A)$

Let $f(x) = C_{n-1} x^{n-1} + \cdots + C_{1} x + (o)$ To find the coefficients concurrence: a) If Ik is an eigenvalue of tA, then eak = f(ak) 6) If Jr is an eigenvalue of A with multiplicity m, then we also have: $\begin{cases} e^{\lambda k} = f'(\lambda k) \\ e^{\lambda k} = f''(\lambda k) \\ \vdots \\ e^{\lambda k} = f(m-i)(\lambda k) \end{cases}$ Thus we get a system of n equations from which we find co,..., Cn-1. ·4 knowing the coefficients co,..., Cu-1 we now colculate the exponential exp(tA).

For
$$A = \begin{bmatrix} 1 & 1 \\ - & 1 \end{bmatrix}$$

we have

 $exp(tA) = c_1tA + c_0I = c_1t\begin{bmatrix} 1 & 1\\ 9 & 1 \end{bmatrix} + c_0\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} c_1t + c_0 & c_1t\\ 9c_1t & c_1t + c_0 \end{bmatrix}$ exp(alues of A: $det(A-\partial I) = \begin{bmatrix} 1-\partial & 1\\ 9 & 1-\partial \\ 9 & 1-\partial \\ 9 & 1-\partial \\ = (1-\partial -3)(1-\partial +3) =$ $= (-\partial -2)(-\partial +4) =$ $= (\partial +2)(-\partial +4) =$

$$\Rightarrow$$
 The eigenvalues of tA are
 $A_1 = -9t$ and $A_2 = 4t \Rightarrow$

It follows that $\exp(tA) = \dots = \frac{1}{6} \begin{bmatrix} 3e^{4t} + 3e^{-2t} & e^{4t} - e^{2t} \\ ge^{4t} - ge^{-2t} & 3e^{4t} + 3e^{-2t} \end{bmatrix}$ example For $A = \begin{bmatrix} 0 & 1 \\ -9 & 6 \end{bmatrix}$ we have $exp(tA) = c_1tA + c_01 = \cdots$ $= \begin{bmatrix} c_0 & c_1 t \\ -9c_1 t & 6c_1 t + c_0 \end{bmatrix}$ Eagenvalues: det(A - AI) = -A = -A(6 - A) - (-9) = $= -61 + 3^2 + 9 = (3 - 3)^2 = 7$ => A=3 double eigenvalue of A => A=3t double eigenvalue of tA For $f(x) = C_1 \times f(x) = C_1$ thus

thus

$$exp(tA) = \dots = \begin{bmatrix} (1-3t)e^{3t} & te^{3t} \\ -9te^{3t} & (1+3t)e^{3t} \end{bmatrix}$$

Now let us consider

$$\begin{cases} \frac{dy_1}{dt} = \frac{y_2}{dt} \\ \frac{dy_2}{dt} = -\frac{g_3}{y_1 + 6y_2} \end{cases} \Leftrightarrow \frac{d}{dt} \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \\ \frac{dy_2}{dt} = -\frac{g_3}{y_1 + 6y_2} \end{cases} \Leftrightarrow \frac{d}{dt} \begin{bmatrix} y_2(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

It follows that

$$\begin{bmatrix} y_{1}(t) \\ y_{2}(t) \end{bmatrix} = e \times p(t A) \begin{bmatrix} y_{1}(0) \\ y_{2}(0) \end{bmatrix} = \\
= \begin{bmatrix} (1-3t)e^{3t} & te^{3t} \\ -9te^{3t} & (1+3t)e^{3t} \end{bmatrix} \begin{bmatrix} y_{1}(0) \\ y_{2}(0) \end{bmatrix} \Rightarrow \\
\Rightarrow \begin{cases} y_{1}(t) = (1-3t)e^{3t} & y_{1}(0) + te^{3t} \\ y_{2}(0) \end{bmatrix} \\
= 2 \begin{cases} y_{1}(t) = (1-3t)e^{3t} & y_{2}(0) \\ y_{2}(t) = -9te^{3t} & y_{1}(0) + (1+3t)e^{3t} \\ y_{2}(0) \end{bmatrix}$$

-> 2nd method For a 2x2 matrix A with eigenvalues A, Jq, the matrix exponential is given by: a) If 2, # 22 then $exp(tA) = \frac{\lambda_{i}e^{\lambda_{g}t} - \lambda_{g}e^{\lambda_{i}t}}{\lambda_{i} - \lambda_{g}} + \frac{\lambda_{i}t}{\lambda_{i} - \lambda_{g}}$ 6) 18 1.= 22=2 then $exp(tA) = e^{At}(1-At)I + te^{At}A$

EXERCISES

10

Rotation matrix. (19) Show that the rotation matrix

$$h(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

satisfies:

$$R(\theta) = \exp\left[\vartheta \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\right], \ \vartheta \in \mathbb{R}.$$

$$I \rightarrow Use \ e^{i\theta} = \cos\theta + i\sin\theta.$$

MEE6: Graph Theory. Part 2

GRAPH THEORY I

Adjacency matrix Def : Let G be a graph with vertices V(G)= 24, ug,..., un 3. B) We define the <u>connectivity</u> matrix B(G) = Mn(R) via $B(G) = A(G) + A^{2}(G) + ... + A^{n-1}(G)$ EXAMPLE Consider the groph & given by G: lig lig lig lig The corresponding adjacency matrix is: $A(G) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 2 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}$ Note that loops are counted twice.

.....

Remark a) A closed walk we W (6) is a walk whose starting point \$ (w) and endpoint t(w) coincide It follows from the previous result that the number of closed walks with length KEIN* is given by: $\left| \left| \sum_{w \in W_{\kappa}(G)} \right| \leq (w) = t(w) \leq t = tr \left(A^{\kappa}(G) \right) \right|$ Note that it duda,..., du are the eigenvalues of A(G), then dr, dr, dr, and are the eigenvalues of AK(G). We may then conclude that $tr(A^{k}(G)) = A_{1}^{k} + A_{g}^{k} + \dots + A_{n}^{k}$ Consequently, it is easy to enumerate the number of closed walks, as a function of the length k, via the eigenvalues of the adjacency matrix for any graph G Graph connectivity Thm: Let G be a graph with connectivity B(w). It follows that G connected $\iff \forall a, b \in [n] : (a \neq b \Rightarrow [B(G)]_{ab} > 0)$

This theorem can be used algorithmically to calculate the number of components w(G) for any graph as follows (a) Pick a vertex Ma EV(G) (b) Find all vertices up EV(6) such that [B(6)] ab >0. This defines a set of nortices Vo such that G[Vo] is a component of the graph G. (c) Apply the same algorithm recursively to the graph G-Vo to extract the next component.
(d) Upon removing all vertices, we will have found all graph components, and counting them will gire us w(G). Given an algorithm that calculates w(G), it is easy to write algorithms to calculate K(G) and

•

176

.

$$\begin{array}{c} 1 & 1 & 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \\ \end{array}$$

$$= (Ati)^{3} \left| 1 & 2 - \lambda \right| = (Ati)^{3} \left[1 \cdot 1 - (-i)(2 - \lambda) \right] = \\ -1 & 1 \\ = (Ati)^{3} \left(1 + 2 - \lambda \right) = (Ati)^{3} (3 - \lambda) \\ and therefore \\ A cigenvalue of $K_{4} \rightleftharpoons det (A(K_{4}) - \lambda 1) = 0 \rightleftharpoons \\ \Leftrightarrow (Ati)^{3} (3 - \lambda) = 0 \Leftrightarrow Ati = 0 \quad \forall 3 - \lambda = 0 \iff \\ \Leftrightarrow (Ati)^{3} (3 - \lambda) = 0 \Leftrightarrow Ati = 0 \quad \forall 3 - \lambda = 0 \iff \\ \Leftrightarrow A = -1 \quad \forall \lambda = 3. \\ \end{array}$

$$\begin{array}{c} \text{(b)} The number \quad N \quad of closed walks with length n \\ \text{is given } k_{2}: \\ N = 1 \left\{ w \in Wn(K_{4}) \mid s(w) = t(w) \right\} \right\} = \\ = tr(A^{m}(K_{4})) = A_{1}^{n} + A_{2}^{n} + A_{3}^{n} + A_{4}^{n} = \\ = (-1)^{n} t(-1)^{n} t(-1)^{n} + 3^{n} = \\ = 3(-1)^{n} + 3^{n} \\ \text{c) Since} \\ det(A(K_{4}) - A_{1}) = (\lambda + 1)^{3}(3 - \lambda) = (A^{3} + 3\lambda^{3} - 3\lambda^{2} - \lambda) = \\ = -\lambda^{4} + (g - 3)\lambda^{2} + (g - 1)\lambda + 3 \\ = -\lambda^{4} + (A^{2} + 8\lambda + 3) \Rightarrow \\ \Rightarrow -\lambda^{4}(K_{4}) + 6\lambda^{2}(K_{4}) + 8\lambda(K_{4}) + 31 = 0 \\ \Rightarrow A^{4}(K_{4}) = 6\lambda^{2}(K_{4}) + 8\lambda(K_{4}) + 31 \end{array}$$$$

•

177

•

2) 0111 $A^{2}(K_{4}) = A(K_{4})A(K_{4}) = 1011 = 011 = 011$ 1 1 6 1 1 1 0 1 11011110 $= \begin{bmatrix} 3 & 2 & 2 & 2 \\ 2 & 3 & 2 & 2 \\ 2 & 3 & 2 & 2 \\ 2 & 2 & 3 & 2 \end{bmatrix} \Rightarrow$ $= A^{4}(K_{4}) = 6A^{2}(K_{4}) + 8A(K_{4}) + 31 =$ $= 6 \begin{bmatrix} 3 & 2 & 2 & 9 \\ 2 & 3 & 2 & 9 \\ 9 & 2 & 3 & 9 \\ 9 & 2 & 3 & 9 \\ 9 & 2 & 2 & 3 \end{bmatrix} + 8 \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} + 3 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} =$ $= \begin{bmatrix} 21 & 20 & 20 & 20 \\ 20 & 21 & 20 & 20 \\ 20 & 20 & 21 & 20 \end{bmatrix}$ 20 20 20 21 and therefore the number of walks of length 4 are given by. $N = |\{w \in W_4(k_4) | s(w) \neq t(w)\}| =$ $\sum [A^{4}(k_{4})]_{ab} = 20 \cdot 12 = 240$ $a, b \in [4]$ $a \neq b$
EXERCISES

(49) Write the incidence matrices for the following graphs: a) K3 d) K3.3 b) Ky e) Cy c) k2,3 f) P4 Let A(K3) le the adjacency montrix of K3 a) Find the characteristic polynomial of A(k3) b) Show that A³ = 3A + 9I c) How many open walks does k3 have of length 3? d) How many closed walks does k3 have of length 3? e) Calculate A5 and answer the same questions (c), (d) for walks of length 5. 44) Let A(kg, 2) be the adjacency matrix of K2,2 a) Find the characteristic polynomial of A(ke, e) b) How many cycles of length 5 are there in K2,2?

(15) Let G be a graph with adjaconcy matrix Show that G is not Eulerian. (46) Show the following statements: a) $\prod_{a=1}^{n} \prod_{b=1}^{n} [A(G)]_{ab} = 2|E(G)|$ B) $\sum_{a=1}^{n} [A(G)]_{ab} \ge \frac{n}{2} \ge G$ Hamiltonian for all be [n] c) $\Sigma [A(G)]_{ab} \ge A(G), \forall b \in [h]$

V The shortest path problem

Def: A weighted graph G is a graph endowed with a mapping $f: E(G) \rightarrow R$

which maps every edge e EEG) to a unique real number f(e).

Def: Let G be a weighted graph with f: E(G) -1R and let WE?(G) be a path on G. We define the weight f(w) of the path W as:

 $\forall w \in P(G): f(w) = \prod f(e)$ $e \in E(w)$

Recall that a path wEP(G) is a walk on G where vertices and edges are visited no more than one time. E(W) is the set of edges visited by W.

Def: Let G be a weighted graph with f: E(G)-R and let d, B E V(G) with d×B be two vertices of G. We define the distance f(d, B) between a and B as: f(a, B) = min { f(w) | W E P(G, a-B) }

181

• The shortest path problem is, given a weighted graph G with $f: E(G) \rightarrow \mathbb{R}$ and vertices $d, b \in V(G)$ to find a path WEP(G, a-B) such that f(w)=f(a, b). Equivalently, we are looking for the path WEP(G, a-b) that minimizes flw). The Dijkstra algorithm The Digkstra obgorithm can be used to solve the shortest path problem for the special case: VeeE(W: fle)>0 where all edges have a positive weight. The algorithm consists of two parts: (1) Preprocessing: Given the initial vertex aEV(4), ve define a mapping LK: V(G) -> 12 U2003 with KE[N] and N = 1V(G) 1 - 1 and co representing a "fictional" infinite number. We also define a vertex sequence 10, 11, ..., Un-1. (2) Postprocessing: Given the terminal vertex beV(w) and the output of the preprocessing step, the second step of the algorithm will find one (or all) shortest path from the initial vertex a to the ferminal vertex b. · Note that the postprocessing step can be repeated for different choices of a ferminal vertex be V(G) without repeating the preprocessing step. The preprocessing step needs to be repeated only it we change the initial vertex.

Preprocessing step Let act (6) be the chosen initial vertex. •, We define $\int u_0 = \alpha \wedge \phi_0 = \{u_0\} = \{a\}$ $\left[\forall u \in V(G) : Lo(u) = \begin{cases} 0 & \text{if } u = u_0 \\ 0 & \text{if } u \neq u_0 \end{cases} \right]$ ·2 Assume that $\int Su = \{u_0, u_1, \ldots, u_k\}$ 2 LK: V(G) -> RU2003 have already been defined. ► If K= |V(G) - 1, then the algorithm terminates. ▶ Otherwise, we define Likti as follows: 1) $\forall u \in S_{K} : L_{K+1}(u) = L_{K}(u)$ 2) VueV(G)-\$k: (u,uk not adjacent => Lkr(u) = Lk(u)) 3) VueV(G) - Sk: (Uuk adjacent => \Rightarrow L k+1(u) = min { L k(u), L k(uk) + f(uuk) } with mux the edge between u and un. ► We define untie V(G) such that it satisfies: $\int U_{k+1} \in V(G) - S_k$] $\forall u \in V(G) - S_{K} : L_{K+1}(u) \geq L_{K+1}(u_{K+1})$ Note that if multiple choices exist for like, we can fork the execution of the algorithm and pursue cach choice. That may lead to multiple shortest paths of equal weight, if fley exist. We define $\xi_{K+1} = \xi_K \cup \{U_{K+1}, \}$.

A practical implementation of the algorithm is based on a grid of the form: K=0 K=1 K=2 ··· K=n Lico) Lala) • • • Ln(a) Û a Liai) Lalai) Ln (a) • • • Ô a $L_1(a_2)$ $L_2(a_2)$ • • • • Lulaz) Ø 02 $\infty | L_1(d_n) | L_2(a_n) | \cdots$ Ihn (an) Us=a UI Un-1 r = 4 We note that 1) The first column is initialized with 0 for the initial vertex a and with a for all other vertices. We insert us=a on column K=1. 2) Given the construction of column k, we define column kt1 as follows: ► We copy from column k to column kt1 the numbers corresponding to the vertices SK=240, U1, ..., Uh3, and we circle them. No we also copy any additional vertices that are not adjacent to uk from among the set V(6) - SK. ▶ We use the formula $L_{k+i}(u) = \min \{L_k(u), L_k(uk) + f(uuk)\}$ for any remaining vertices.

185 3) Given the column Kt1, we choose from among the non-circled vertices (i.e. all uEV(G) - Sw) the one that minimizes LKH(W). This defines UKH, which we write under the column 142. 4) We define Skti = Skuziekz.

EXAMPLE Consider the following graph with initial vertex a eVG: G : b С d a ς е K=5 K=2 K=3 K=1 K=0 k = 4 \bigcirc \bigcirc 0 4 (0) (4) 0 \bigcirc a 4 G 4 в ω Ì 8 ω 00 8 C to d 0 10 Ø 00 ∞ 00 (b)7 6 6 စ е 60 (2) f Z 9 9 9 တ a Algorithme log: U0 = Q 50 = 203 For K=1: copy a with circle copy cidie $L_{1}(b) = \min \{L_{0}(b), L_{0}(a) + f(ab)\} = \min \{\infty, 0+4\} = 4$ $L_1(f) = \min 2 L_0(f), L_0(a) + f(af) = \min 2 \infty, 0 + 23 = 9$ minimum atf - u= f and fi= Ea, f3

For
$$k=2$$
:
copy a, f with civile
copy b, c, d
Lg(e) = $\min\{L_1(e), L_1(f) + f(ef)\} = \min\{\varpi, 245\} = 7$
minimum at $b \rightarrow u_2 = b$ and $s_2 = \{a, f, 6\}$
for $k=3$:
copy a, f_1b with civile
copy d
Lg(c) = $\min\{L_2(c), L_2(b) + f(bc)\} = \min\{\varpi, 4+4\} = 8$
Lg(e) = $\min\{L_2(e), L_2(b) + f(bc)\} = \min\{T, 4+2\} = 6$
minimum at $e \rightarrow u_3 = e$ and $s_2 = \{a, f, b, e\}$
For $k=4$:
copy a, f_1b_1e with civile
copy c
Lg(d) = $\min\{L_3(d), L_3(e) + f(ed)\} = \min\{\varpi, 6+4\} = 10$
Minimum at $c \rightarrow u_4 = c$ and $s_4 = \{a, f, b, e, c\}$
For $k=5$:
copy a, f_1b_1e, c with civile.
Lg(d) = $\min\{L_4(d), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
done!
Ly(d) = $\min\{L_4(d), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
done!
Ly(d) = $\min\{L_4(d), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(d), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(d), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = $\min\{L_4(c), L_4(c) + f(cd)\} = \min\{10, 8+3\} = 10$
Ly(d) = \min\{10, 8+3\} = 10
Ly(d) = \min\{10, 8+3\}

.

.

-- -- +

. •••

.

4

. .

÷\$9.

(2) · Postprocessing The postprocessing algorithm is illustrated by the following example where we seek the shortest path from vertex "a" to vertex "d" in the previous graph G: 14=1 K=9. k=3 K=4 K=5 12=6 (ŏ)**∢** Shortest path: 0) 0 U 0 0 α (4)+ 4)× 4 h abed 4 00 4 8 g в 00 $\boldsymbol{\omega}$ 07 \odot (io) 3 4 d \mathfrak{O} 00 လ (6)G 6 7 e 00 ∞ q 2 9 J 2 ω b e a С . On the last column we circle the number corresponding to the ferminal vertex, which we show on the side •2 We more left, if the number to the left is equal. Otherwise, we square the vertex under the current column and more to the number corresponding to that vertex. Either way, we circle the next number

•3 hereat until we get to column K=1. •4 The squared vertices form the shortest porth.

188

EXERCISES algorithm to the following Dijkstas (47) Apply weighted graph. ዒ d 3 a 8 2 1 f e Find the shortest path from a to d. Similarly, for the following graph (48 6 2 9 4 d shortest path from a to d the Find

Tree grophs To give a rigorous définition of trees, we need the following preliminary définitions first. + Freliminaries Def: Let f: A-B be a mapping and let \$ 54 be given. We define $f(s) = \{f(x) | x \in s\}$ or equivalently: $y \in f(\xi) \iff \exists x \in S : f(x) = y$ We also say that a) + one-to-one = VX(1×2EA: (f(x1)=f(x2)=)×1=×2) () fonto (=) f(A) = B c) f bijection and f one-to-one f onto. Def: (Isomorphic graphs) Let Gilt be two graphs. We say that G=H (G isomorphic to It) it and only if there exist mappings f: V(G) - V(H) and g: E(G) - E(H) such that $\begin{cases} f_{1} g \text{ ore brjechions} \\ l \forall e \in E(G) : \psi_{H}(q(e)) = f(\psi_{G}(e)) \end{cases}$

interpretation: The bijections fig represent a relabelling of the rertices and edges of G. We say that $G \cong H$ when after such a relabelling, the vertices are connected by the edges the same way. EXAMPLE H: G≡H with Brjections F(1) = d (both have degree 37 f(2) = c (both have degree 4) f(3) = a (3 connected with 1/2) fly) = e (4 also connolal with 1,2) f(s) = & (both have degree 1) and g(12) = dcg(14) = de g(23) = cag (24) = ce g(257= bc g (31) = ad

Det: (Sub graphs) Let Git be two graphs. We say that $H \subseteq G \iff f \in (H) \subseteq F(G)$ $(\forall e \in E(H) : \psi_{H}(e) = \psi_{G}(e)$ notation: We denote the set of all subgraphs of a graph G as P(G) such that HEY (G) ED HEG • Definition of trees A tree is defined as a connected acyclic graph. In detail, this is done via the following definitions: Def: Let & be a graph. We say that a) G cyclic ⇒ IHE?(G): InelN*: H≅Cn b) G acyclic => G not cyclic ⇔ VHE?(G): VnelN*: H¥ Cn Intuitively, G is cyclic if and only if there is a subgraph It of G such that it is isomorphic to the cycle graph Cn for some n. Recall that: Cz: () $C_1:$

therefore loops and multiple edges automatically form cycles. It follows that: 6 acyclic -> 6 simple EXAMPLE Consider the graph G : OL ol 0 Since $G[\{a, b, d, e\}] \cong (u \implies G \text{ cydic.}$ Def: Let G be a graph. We say that G tree (=) G connected L & acyclic

Properties of frees - Summary (D-> G free => G simple (2) A graph is a tree it and only it for any two distinct vertices there is a unique path that connects them Thm: Let G be a graph. Then, G tree \in $\forall a, b \in V(G) : (a \neq b \rightarrow |P(G, a \rightarrow b)| = 1)$ 3→ A free always disconnects to two components upon removing any one edge.
<u>Thm:</u> Let G be a graph. Then, G free ⇒ Ve EE(G): w(G-Se3)=2 (1)-> helation between number of edges and vertices Thm: Let G be a graph. Then, G free () [E(G)] = [V(G)]-1 L G connected (5) Trees and connectivity $\frac{\text{Thus: het G be a graph. Then,}}{\text{G free } K(G) = \lambda(G) = S(G) = 1$

Properties of trees () -> G tree => G simple Prost G free => S G acyclic => 2 G connected =) G acyclic ⇒ G simple. D 2 A graph G is a tree it and only if for any two distinct vertices there is a unique path that connects them. $\frac{\text{Thm}: \text{Let } G \text{ be a graph. Then}}{G \text{ tree } G \text{ tree$ Proof (=>): Assume that <u>G is a free</u>. Let <u>a, b \in V(6)</u> be given and assume that <u>a ≠ b</u>. To show that |P(G, a - G)| = 1we assume that IP(6, a-18) = 1 and derive a contradiction We distinguish between the following cours: (ase 1: Assume that |P(G, a-b)| = 0. Then,

|P(G, a-B) = 0 => G not connected -> G not a tree. which is a contradiction. Cose 2 : Assume that P(0, a-0) >2. Choose paths pipe EP(G, a-b) such that pi #P2. It follows that P(6, a-0) = 1We have this shown that $\forall a, b \in V(b) : (a \neq b =) |P(b, a - b)| = 1)$ (E): Assume that $\forall a, b \in V(c) : (a \neq b \Rightarrow | P(c, a - b)| = 1)$ It immediately follows that G connected. (1) To show that G is acyclic, assume that G is cyclic. Let p be a cycle of G and let a, b eV(G) be two vertices on the cycle p. Then, there are at least two paths that connect a to b This contradicts the hypothesis. It follows that G acyclic (2) From Eq.(1) and Eq.(27: Gir a tree.

(4)- Relation between number of edges and vertices Thm: Let G be a graph. Then G tree (3) S | E(G) | = |V(G) | - 3 G connected Prost: (=) Assume that G is a tree. Then, by definition G tree => G acyclic A G connected -> G converted (1) To show [E(G)] = [V(G)] - 1 we use indunction on [V(G)]. ► For [V(6)]=1, the only tree that can be defined : 21 G: .a or equivalently: $\left(V(G) = \left\{ a \right\} \right)$ $\int E(G) = \emptyset$ $\int \Psi G = \emptyset$ Then |E(G)| = |O| = 0 = 1 - 1 = |V(G)| - 1▶ For WGI ≤ n, we assume that the statement has been shown for all possible frees. ► Consider any tree G with IV(G) = n+1. Choose any edge eEE(G). From property 3 we have w(G-fei)=2. Let Gi, Gg be the connected components of G-ger such that G-ger = GivG2. Note that

GI, 69 cannot be cyclic because otherwise & would not be a tree. It follows that Gibg frees => > [E(Gi)] = [V(Gi)] -1, via the induction hypo- $2|E(G_2)| = |V(G_2)| - 1$ there: We also note that G has the edges of G1, G2, and the edge e., therefore $|\mathsf{E}(\mathsf{G})| = |\mathsf{E}(\mathsf{G}_{\mathsf{Q}})| + |\mathsf{E}(\mathsf{G}_{\mathsf{Q}})| + 1$ $= [[V(G_1)] - 1] + [V(G_2) - 1] + 1$ $= |V(G_1)| + |V(G_2)| - 1$ $= |V(G_1 \cup G_2)| - 1 = |V(G - \frac{1}{2}e^3)| - 1$ = |V(G)| - 1(=): Assume that $\int |E(G)| = |V(G)| - 1$ l & connected To show that G is a free, we assume that G is not a tree, to arrive a contradiction. Remore as many edges from G as necessary to eliminate all cycles in G. Let EOCELOI be the set of all the edges removed. Then, using the (\Rightarrow) result: $G-E_0$ tree $\Rightarrow |E(G-E_0)| = |V(G-E_0)| - 1 \Rightarrow$ \Rightarrow |E(G)| = |E(G-E_o)| + |E_o| = = |V(G-E0)| - 1+1E0] = $= ||V(G)| - 1] + |E_0| = |E(G)| + |E_0| \Rightarrow$ => [Eo] = 0. This contradicts the assumption that G is not a free It follows that G is a free

200 Proof Assume that G is a tree. Then, $|E(G)| = |V(G)| - 1 \Longrightarrow$ $\Rightarrow S(G) \leq 2|E(G)| = 2(|V(G)|-1) < 2$ |V(G)| |V(G)| \Rightarrow $\delta(G) = 0 \vee \delta(G) = 1$ We also note that 6 tree => 6 acyclic 1 6 connected => 6 connected => K(G) > 1 / A(G) > 1 / S(G) > 1 It follows that 8(6)=1 $1 \leq k(G) \leq \delta(G) = 1 \implies k(G) = 1$ $1 \leq \lambda(\omega) \leq \delta(G) = 1 \Rightarrow \lambda(\omega) = 1$ ß

EXAMPLE / APPLICATION

A saturated hydrocarbon is a molecule Cattle in which a) Every G atom has 4 simple bonds b) Every 4 atom has 1 simple bond c) No sequence of bonds forms a cycle. Show that (a), (B1, (c) imply that b=2at 2

examples

H 4	ннн
- c - c - H	H-C-C-C-H
। । भ म	
Calle	Cy Hio

Solution

Let G be the graph representing the molecule Cathe where the C.H atoms are vertices and the bonds are edges. Let V_1 be the vertices corresponding to C atoms and let V_2 be the vertices corresponding to H atoms. Since G atoms have 4 bonds and H atoms have 1 bond: ${Vu \in V_1: d(u) = 4}$ ${Vu \in V_2: d(u) = 1}$

We also note that
$$|V_1|=a$$
 and $|V_2|=b$. It follows that
 $|V(G)| = |V_1|+|V_2| = a+b$
and
 $|E(G)| = \frac{1}{2} \sum d(u) = \frac{1}{2} \sum d(u) + \frac{1}{2} \sum d(u) =$
 $= \frac{4|V_1|+|V_2|}{2} = \frac{4a+b}{2}$
Since no sequence of bonds forms a cycle,
(5 is a tree => $|E(G)| = |V(G)| - 1 \Rightarrow \frac{4a+b}{2} = a+b-1$
 $\Rightarrow 4a+b = 2(a+b) - 2$
 $\Rightarrow 4a+b = 2a+2b - 2$
 $\Rightarrow 4a+b = 2a-2b + 2 = 0$
 $\Rightarrow 2a - b+2 = 0 \Rightarrow b = 2a+2$.

EXAMPLE / APPLICATION

Consider an unsaturated hydro carbon molecule Call b such that a) Every Catom has 4 simple bonds, except there also exists one triple bond between C atoms. b) Every H atom has 1 simple boud c) No sequence of bonds forms a cycle. Then, show that B=2a-2. examples H H - C - C = C - H $H - C \equiv C - H$ C_3H_4 $C_{2}H_{2}$ Solution Let G be a graph representing the molecule Call& Let Vi be the vertices corresponding to Ci atoms with 4 simple bonds. Let V2 be the vertices corresponding to G atoms with one triple bond and one simple bond. Let V3 be the vertices corresponding to H atoms with one simple bond. It follows that $\int |V_1| + |V_2| = a$ $2|V_{3}| = b$

and

$$\begin{cases} \forall u \in V_{1} : d(u) = 4 \\ \forall u \in V_{2} : d(u) = 2 \\ \forall u \in V_{3} : d(u) = 1 \end{cases}$$
Also, since there is only one triple hand, involving
two C aboms, it follows that $|V_{2}| = 2$.
Then:

$$|V(u)| = |V_{1}| + |V_{2}| + |V_{3}| = (|V_{1}| + |V_{3}|) + |V_{3}| = a + l$$
and

$$|V_{1}| + |V_{2}| = a \Longrightarrow |V_{1}| = a - |V_{2}| = a - 2$$
and

$$|V_{1}| + |V_{2}| = a \Longrightarrow |V_{1}| = a - |V_{2}| = a - 2$$
and

$$|E(u)| = \frac{1}{2} \sum_{u \in V(u)} d(u) = \frac{1}{2} \sum_{u \in V_{2}} d(u) + \frac{1}{2} \sum_{u \in V_{3}} d(u)$$

$$= \frac{1}{2} \sum_{u \in V(u)} d(u) + \frac{1}{2} \sum_{u \in V_{2}} d(u) + \frac{1}{2} \sum_{u \in V_{3}} d(u)$$

$$= \frac{4|V_{1}|}{2} + \frac{2|V_{2}|}{2} + \frac{1|V_{3}|}{2} = \frac{4(a - 2) + 2 \cdot 2 + 6}{2} = \frac{4a - 8 + 4 + 6}{2} = \frac{4a + 6 - 4}{2}$$
Since no sequence of hands forms a cycle.

Since no sequence of bonds forms a cycle, G is a tree \rightarrow $|E(G)| = |V(G)| - 1 \Rightarrow$ $= \frac{4atb - 4}{2} = atb - 1 \Rightarrow$

=> 4a+6-4= 2a+26-2 => => 4a+b-4-2a-2b+2=0 \Rightarrow 2a - b - 2 = 0 = 7 b = 2a - 2

EXAMPLE

a) Show that ha is a tree => a=1 Va=2 Method: For problems of this time, it is possible to construct a direct argument using (if and only of) at every step, via the following proposition: G tree (G connected / | E(G) | = | V(G) | - 1 Usually, the condition that 6 is connected can be removed it it is unconditionally true. Solution Ka has "a" vertices, and every vertex connects with one edge with the other a-1 vertices. It follows that. IV(Ka) = a and $\forall u \in V(k_a) : d(u) = a - 1$ and therefore: $|E(k)| = \frac{1}{2} \int d(u) = \frac{1}{2} (a-1) |V(k_a)| = \frac{a(a-1)}{2}$

It follows that $\left| E(k_{\alpha}) \right| - \left| V(k_{\alpha}) \right| + 1 = \frac{a(\alpha - 1)}{2} - \alpha + 1 = \frac{1}{9} \left[\alpha^{2} - \alpha - 2\alpha + 2 \right] = \frac{1}{9} \left[\alpha^{2} - \alpha - 2\alpha + 2 \right]$ $= (1/2)(a^2 - 3a + 2) = (1/2)(a - 1)(a - 2)$ and therefore: ka free => Ka connected / IE(Ka) = [V(Ka)] -] €) [E(Ka)] - [V(Ka)] + 1 = 0 (1/2)(a-1)(a-2) = 0=) a=1 Va=2 Note that: Kg: - k_i: • Kg: -Ky:

EXERCISES
(3) Consider a generalised hydro carbon molecule (ally
that has t triple bonds and d double bonds. Show
that:
$$b = 2a - 2(t+d-1)$$
.
1 $\rightarrow \underline{Hint/Outline}$: Possible configurations for the bonds
of G atoms are:
 $-\frac{1}{4} - or = \frac{1}{4} = or = c = or = c - \frac{1}{4}$
and for H atoms: H-
Consequently, we define the following vertex sets:
V = all G atoms with 4 simple bonds
Vz = all G atoms with 1 simple and 1 triple bond.
V3 = all G atoms with 2 double bonds
V4 = oll G atoms with 1 simple and 2 simple bonds.
V5 = all H atoms with 1 simple bond.
Then we note that $2|V_2| + |V_4| = 2d$ and $|V_2| = 2t$
(explain why) and show that $|V(G)| = a+b$ and
 $|E(G)| = \frac{1}{2} [2a+b+2|V_1|+|V_4|] = 2a-2t-2d$
and the rest is up to you.

•

(50) Let G be a tree. Use the fact that S(G)=1 and K(G)=1 to show that a) G is not Eulerian B) G is not Hamiltonian c) Can we establish (a) and (b) via an alternate argument directly from the tree definition? (51) A forest is a graph whose components G. Gg,..., Gn are trees. Show that if G is a forest, then $|\mathsf{E}(G)| = |V(G)| - \omega(G)$ (Hint: for all a, we note that |E(Ga)|= |V(Ga)|-1). (52) Let kab be the complete bipartite graph. Show that Kab is a free (=) a=1 or b=1 (53) Show that the path graph Pa is a free for all a 72. (54) Let Ca be the cycle graph. Show that for a>2, Ca is not a free. → Use the statement G tree (|E(G) |= |V(G) |- 1 / G connected).

(55) Let G be a regular graph with at least three vertices. Show that G cannot be a free. that G is not a free, assume that G is a free. Then show that if p is the common degree of all vertices, then p satisfies: $\rho = 2 \frac{|V(\omega)| - 1}{||\omega||}$ Next show that IV(G)173 implies 12p<2 which is a contradiction since p has to be an integer. It will help to write p = 2f(|V(G|D))with $f(x) = \frac{x-1}{x}$ and use calculus to study the graph of $\frac{x}{1}$ f in the interval [3, + ∞).

V The minimum spanning tree problem • Let G be a graph. We say that a free T is a <u>spanning free</u> of G if and only if (a) T is a free (b) T is a subgraph of G (c) All the vertices of G are also vertices of T, and vice versa. T spanning free \iff of G T is a free V(T) = V(G)· The set of all spanning trees of G is denoted as T(G) = {T⊆G | T spanning tree of G} • Thm: ((ayley) The complete graph kn has nⁿ⁻² spanning free. $\left| \tau(kn) \right| = n^{n-2}$

• The problem : Let f: E(G) -> R be a weight function that maps even edge e E E (6) to a number f (e) ER. If TEC(6) is a spanning free of G then the weight associated with T is given by $w(T) = \sum f(e)$ $e \in E(T)$ A tree To is a minimum sponning tree it and only if it miximizes f(T). To minimum $\iff \forall T \in r(G) : f(T_0) \leq f(T).$ spanning tree of G • A graph always has at least one minimum spanning tree and it is not necessarily unique. · Kruskal's Algorithm e, EE(G) that minimizes f(ei) 1) Choose we have chosen eileg,..., ek. 2) Assume Choose entre E(6)- Lerequer, enz such that

Add DC Add AB Add BP

Minimum spanning free. To = G[{AB, BP, DC3]

213EXAMPLE Α Adol AE 6 From AC, CE choose CE E B 6 4 Reject AC (cycle AECA) Add BC Reject AB (rycle AECBA) Reject BE (rycle ECBE) Add ED 9 We now have a spanning free Thus : To = G[2AE, ED, EC, BC]]

EXERCISES

Show that if G connected then (56) |E(G)| > |V(G)| - 1(lfint: Consider the spanning tree of G) How many spanning frees doe the following graphs have? (57) a) kz b) ky c) ks Find the minimum spanning free for the following graphs: (58)13 12 13 12 a) <u>c)</u> d with 4 G) ac=1, ad=3, ac=2Ŧ 3 bc = 4, bd = 5, be = 3Show that | z(kg,n) | = n2h-1 Cltint: Try Kg,4 first as an example then generalize)
V Planar graphs

Let G be a graph. We say that G is <u>planer</u> if and only if it can be embedded on a two-dimensional plane so that no two edges intersect, except at the vertices. A graph whose definition does not seem to be planar could still be planar, using a different embedding. The definition of "planar" requires the existence of at least one such embedding.

EXAMPLE

Ky is planar. Consider an embedding which is not planar and a different embedding which is planar.

planar embedding of ky non-planar embelding of Ku

higorous definition

A rigorous definition of planar graphs is based on the concept of a simple curre. Intuitively, a simple curre is defined as a curre that does not cross itself. We also need the curve to be continuous, with no interruptions. EXAMPLE "simple curre" not simple curve not simple due to lack of continuity. Def (Simple curves) (a) A curve (c) defined as $(c): (x,y) = f(t), t \in [a,b]$ is the set of points given by: $(c) = \{ \{ \{ \} \} | \{ \{ \{ \{ a, b \} \} \} \} =$ $= \{(x,y) \in \mathbb{R}^2 \mid \exists t \in [a,b] : (x,y) = f(t) \}$ (b) We say that (c) simple curre () f continuous on [a, b] If one-to-one

216

hemarks • We denote C2[2,6] as the set of all mappings f: [a, b] -1 R2 that define a simple curre. · Note that given two such mappings fige Colo, 1], the chaim that the corresponding curies do not intersect, except possibly at the endpoints can be written concisely as: $f((o,i)) \cap g((o,i)) = \emptyset$ Using open intervals is needed in order to ignore the endpoints of the two curres. Based on the above, we define planar graphs as follows: Det : Let G le a graph. We say that G is planar it and only if there exist (a) a mapping f: V(G)-1R² of vertices to points on the plane IR² (b) a mapping g: E(w) -> C2LO11 of edges onto mappings that represent simple curres. such that the following condition is solution: VeEE(G): [g(e)] (20,13) = f (46(e)) $1 \forall e_i, e_2 \in E(G) : [g(e_i)]((o_i)) \cap [g(e_2)]((o_i)) = \emptyset$

218Faces of planar graphs • A planar graph partitions the plane into regions. We call these region faces and the set of all faces of the graph G is denoted F(G). This includes the infinite face which represents the area outside the overall perimeter of the graph G. EXAMPLE a f_1 f_2 f_4 $F(\omega) = \xi f_1, f_2, f_3, f_4$ f_1 f_3 c with fu fle infinite face. • For eveny edge e E E (c), on either side of the edge e there are one or two faces. We say that these taxes are incident upon the edge e, and we define on incidence Mapping $f_G: E(G) \rightarrow P_1(F(G)) \cup P_2(F(G))$ such that VeEE(G): fg(e) = { fo EF(G) | fo incident to e3 Def: Let G le a planar graph and let fifz EF(G) be two faces of G. We say that fifz adjacent => IeeE(G): fo(e) = 2fifz 3

219EXAMPLE Consider the graph (-:12 f, b Then: $(f_G(ab) = f_G(bc) = f_G(ac) = \{f_1, f_9\}$ $7f_{G}(d) = 2f_{2}$ $f_{G}(de) = f_{G}(ef) = f_{G}(f_{g}) = f_{G}(g_{d}) = 2f_{2}(f_{7})$ he call that given a connected graph 6 and an edge e ∈ E(G), we say that
 e bridge => w(G-3e3)>w(G)
 If can be shown that: Prop: Let G be a planar graph and let eEE(W) be an edge. Then: e bridge (=>) |fg(e)|=1

Pual graph and face degree Def: Let G be a planar graph. We define the dual graph G* such that: $\int V(G^*) = F(G)$ $f E(G^*) = E(G)$ $(\forall e \in E(G^*): \psi_{G^*}(e) = f_G(e)$ Informally, the vertices of G* are the faces of G. G* and G have the same edges. In G* and edge connects faces of G if in G the two faces are incident to that edge. The definition of G* allows us to define the degree of faces as follows: Def: Let G be a planar graph with dual graph G*. Let f E F(G) be a face of G. We define the degree d (f) such that : $d_G(f) = d_G^*(f)$ Note that G* sees f as a vertex and thus dG* (f) is the vertex degree of f wat with respect to G*, which was previously defined. An immediate consequence is a handshaking lemma for faces. [Lemma: Let G be a planar graph. Then, $\sum d_{G}(f) = 2|E(G)|^{2}$ fef(G)

221Proof Let G* be the dual graph of G. Then: $\Sigma d_G(f) = \Sigma d_G(f)$ [def. of face degree] feF(G) feV(G*) = $2|E(G^+)|$ [handshaking lemma on G^+] = 2|E(G)| [definition of G^+] which proves the lemma. Def: Let G be a planar graph. We say that a) G face-regular ↔ JaEIN: ∀feF(G): dG(f) = a b) G face-regular with regularity a ∈N(=) ⇒ ∀feF(G): dG(f) = a An immediate consequence of the handshaking lemma for faces is that Prop: Let G le a planar graph. Then G face-regular with face-regularity $reN \Rightarrow$ $\Rightarrow a | F(G) | = 2| E(G) |$

222EXAMPLE For G: b fz the dual graph is: fq f3 G* , cd1 bc aa bd cd 2 ab • Note that a loop in G becomes a bridge in G*. A bridge in G lecomes a loop in G*
d G(fi) = [laa3] = 1 $d_{G}(f_{2}) = [2b_{c}, b_{d}, cd_{1}] = 3$ $d_{G}(f_{3}) = |f_{cd}|, cdg| = 2$ d 6 (fy) = 12 aa, ab, &c, bd, cd 93 + 12 ab 31 = = 5 + 1 = 6

Face boundary and face degree • Let G be a planar graph. Intuitively, a walk WEW(6) is the boundary of a face fet(w) if and only if it is a closed walk that uses every edge that is not a bridge once, and uses every edge that is indeed a bridge twice, and includes all edges that are incident to the face f. • The set of all such walks shall be denoted as b(f). Writing this definition rigorously is difficult, but it can be effected by introducing some edge-counting notation: notation: Let 6 be a graph, let wEW(G) be a walk on G, and let ect(G) be an arbitrary edge. The number of times the edge e is used on the walk w is denoted as lelw with VeeE(G): lelw = 12 ke[l(w)] ek(w) = e31Def: Let G be a planar groph, let fEF(6) be a face, and let wEW(G) be a walk. We say that (w closed walk Web(F) => { VeeE(G): (fefg(e) => eeE(w)) (VeeE(w): lelw = St, if e is not bridge le 11 e is bridge

The main result is that the length of all walks WEB(f) is equal to do(f) Prop: Let G be a planer graph, and let fEF(G) le a face of G. They $\forall w \in b(f) : l(w) = d_G(f)$ EXAMPLE Consider the previous example $(a, aa, a) \in b(f_i) \implies d_0(f_i) = 1$ $(b, bc, c, cd1, d, db, b) \in b(f_2) \Rightarrow dc(f_2)=3$ $(c_1, cd_2, d_1, cd_1, c) \in B(f_3) =) d_G(f_3) = 2$ (a, aa, a, ab, b, bc, c, cd2, d, bd, b, ab, a) - Eb(fy) \rightarrow dG(fy)=6

Properties of graphs 1) - Trees are planar $\frac{\text{Tehn}: \text{het } G \text{ be a graph. Then}}{G \text{ free } \Rightarrow \int G \text{ planar}} \frac{1}{|F(G)| = 1}$ To show that a free is planar, we need to define a general embedding for all trees outo 12. This can be done by choosing a vertex and explorting the length of the unique path to all other vertice. To show that |F(w)| = 1, we note that G has the infinite face, so IF(G) = 1. To show that IF(G) < 9 we note that if G has additional faces, those taces are enclosed by cycles and it G has cycles then it is not a tree. This proof sketch can be made more precise, but doing so is a lot of work (9) -> Euler, formula

Thm: Let G be a graph. Then S G planar => [V(G)] - [E(G)] + [F(G)] = 2 C connected

Proof

We use the kruskal algorithm to remove edges that are part of cycles in & until all cycles are eliminated and we obtain a spanning free T. Let Eo be the set of all edges removed. Since eveny edge eEEs was part of some cycle, removing each e c Eo corresponded to merging touofaces, thus reducing the number of faces by 1. It follows that $|F(G)| - |E_0| = |F(G - E_0)| = |F(T)| = 1$, since T is a tree. We also note that since T spanning tree of $G \Rightarrow \sum |V(\tau)| = |V(\omega)|$ $|E(\tau)| = |V(\tau)| - 1$ and since $T = G - E_0 \implies |E(G)| = |E(T)| + |E_0|$ From the above, we have: $|V[G]| - |E[G]| + |F(G)| = |V(T)| - [|E(T)| + |E_0|] + [1 + |E_0|]$

 $= |V(T)| - |E(T)| - |E_0| + 1 + |E_0| =$

- = |V(T)| |E(T)| + 1 =
- = |V(T)| [|V(T)| 1] + 1 =
- = |V(T)| |V(T)| + 1 + 1 =
 - = 1 + 1 = 2.

3 > Planerity and girth $\frac{\text{Def}:}{\text{Def}:} \text{Let } G \text{ le a graph. We define the girth } g(G)}$ of the graph G as: $g(G) = \min\{n \in \mathbb{N}^* \mid \exists H \in \mathcal{P}(G): H \cong Cn\}$ $g(G) = \min \{ n \in \mathbb{N}^* | \exists H \in \mathcal{P}(G) : H \cong Cn \}$ Kemarks a) The girth g(G) is equal to the length of the shortest cycle (n contained in the graph G. Recoll that: Ci: and Cz: b) If G has a loop then g(G) = 1
If G has a multiple edge and no loops, then g(G)=2.
If G is simple (no loops and no multiple edge,) then $q(G) \ge 3$. c) For any face fEF(6) the length of a boundary WEB(f) cannot be shorter than g(6). It follows that: that: G planar $\Rightarrow \forall f \in F(G): d_G(f) \ge g(G)$ Our man result is the following theorem:

Thim: Let G be a graph. Then: (& planar $\begin{cases} connected \implies |E(G)| \leq g(G)[|V(G)|-2] \\ G simple \\ g(G)-2 \end{cases}$ hemarks a) In practice, we use the contrapositive statement to show that a graph is NOT planar: G connected A G simple IE(G) > g(G)[IV(G)-2] => G not planar 3(6)-2 b) It is worth noting that $\begin{cases} G connected \implies |V(G)| > 3 \\ G simple \end{cases}$ which ensures the numerator of the RHS of the Inequality is positive. Likewise, G simple => glo)73 so the denominator will be positive too. Prost of theorem Assume that G is planar, connected, and simple. Since $\forall f \in F(\omega) : d_G(f) \ge g(\omega)$ $\Rightarrow 2|E(G)| = \int d_G(f) \ge \int g(G) = g(G)|F(G)| \Rightarrow feF(G) \quad f$

$$\Rightarrow |F(G)| \leqslant \frac{2}{g(G)} |F(G)| = |F(G)|$$
and since
$$\begin{cases} G \text{ planar } \Rightarrow |V(G)| - |E(G)| + |F(G)| = 2 \Rightarrow \\ G \text{ connecled} \end{cases}$$

$$\Rightarrow |E(G)| = -2 + |V(G)| + |F(G)| \leqslant \\ \leq -2 + |V(G)| + 2 = |E(G)| \Rightarrow \\ g(G) \end{cases}$$

$$\Rightarrow \left[1 - \frac{2}{g(G)}\right] |E(G)| \leqslant |V(G)| - 2 \qquad (1)$$

$$\Rightarrow \frac{g(G) - 2}{g(G)} |E(G)| \leqslant |V(G)| - 2 \qquad (1)$$
and since
$$G \text{ simple } \Rightarrow g(G) \ge 3 \Rightarrow g(G) - 2 \ge 3 - 2 = 1 \ge 0 \quad (2)$$
combining Eq.(1) and Eq.(2); we get:
$$|E(G)| \leqslant -\frac{g(G)[|V(G)| - 2]}{g(G)} = 0$$

$$g(G) - 2 \qquad D$$

$$g(G) - 2 \qquad$$

_aa,

 $= \frac{(x-2)-x}{(x-2)^2} = \frac{-2}{(x-2)^2} \langle 0, \forall x \in [3, t^{\infty}) = 7$ => f decreasing on [3, +00) This means that the inequality in the above theorem becomes tighter as we increase g(6). It also follows that: S G planar $\int G \text{ connected} \implies |E(G)| \leq 3(|V(G)| - 2)$ L & simple Proof Since SG simple => Sq(G) 7-3 G connected [IV(G)] >3 it follows that) 6 planar $f(G) = 1E[G] \leq g(G) [1V(G) - 2]$ g(6)-2 LG simple = f(q(G)) [[V(G)] - 2] $\leq f(3)[V(6) - 2]$ $=\frac{3}{3-9}[|v(\omega)|-9]$ $= 3(|v(\omega)| - 2)$

231APPLICATIONS a) Show that Kg is not planar. Solubon Kg: We note that IV(Kg) = 5 and YUEV(Kg): d(u)=4, so $2|E(K_5)| = I d(u) = I 4 = 4|V(K_5)| = 4.5 = 20 \Rightarrow$ $U \in V(K_5)$ $U \in V(K_5)$ =) [E(Ks)] = 10 Also $3(|V(K_{5})| - 2) = 3(5 - 2) = 3 \cdot 3 = 9 < 10 = |E(K_{5})| \Rightarrow$ $\rightarrow |E[K_{S}] > 3(|V(K_{S})| - 2)$ (1) and Sky connected (2) l Kç simple From Eq. (1) and Eq. (2): Ke not planar.

B) Show that K3,3 is not planar Solution d. de Ø2 K33: bz We usle that bi ·lz $|V(k_{3,3})| = 3+3 = 6$ and $\forall u \in V(k_{3,3}) : b(u) = 3$ $\Rightarrow 2|E(K_{3,3})| = I d(u) = I 3 = 3|V(K_{3,3})| =$ $u \in V(k_{3,3})$ $u \in V(k_{3,3})$ = 3.6 = 18 => $=) |E(K_{3,3})| = 9$ Since K3,3 simple => g(G)>3. Due claim that K33 cannot have a 3-cycle. To show this, assume that $w = (u_1, e_1, u_2, e_3, u_3, e_3, u_1)$ is a 3-cycle. We distinguish between the following cases. Case 1 : Assume that UEVI. Then, $u, eV_1 \implies ugeV_2 \implies u_3eV_1 \implies u_i eV_2$ which is a contradiction. Case 2: Assume that UIEVQ. Then, $u_1 \in V_q \implies u_q \in V_1 \implies u_3 \in V_q \implies u_1 \in V_1$ which is also a contradiction.

In both cases we have a contradiction, so it follows that K3,3 has no 3-cycles, therefore g(6)>4. We exhibit a 4-cycle: $W = (a_{1}, a_{1}b_{1}, b_{1}, a_{2}b_{1}, a_{2}, a_{2}b_{2}, b_{2}, a_{1}b_{2}, a_{1})$ \Rightarrow $g(G) \leq 4$. It follows that $g(k_{3,3}) = 4$, and therefore: $g(k_{3,3})[V(k_{3,3})] - 2] = 4(6-2) = 4.4 = 8$ $g(k_{3,3}) - 2 = 4-2 = 2$ $|E(k_{3,3})| = 9$ => $|E(K_{3,3})| > g(K_{3,3})[|V(K_{3,3})| - 2] =>$ $g(K_{3,3}) - 2$ =) K3,3 not planar.

EXERCISES 60 For the following planar graphs, identify the faces, the degree of each face and then draw the dual graph. (j) a) Q × C L c) a f) 0 e C connected (61) Show that if a planar graph is face-regular with face-regularity 4 and has 10 vertices then it must have 8 faces.

(62) Show that a face-regular playar connected graph G with face regulations r must satisfy (a-2)|F(G)| = 2|V(G)| - 4Then show that if IV(G) >3 then a>3. (63) Consider a planar graph & which is simple, connected and regular with regularity a and face-regular with regularity b. Show that 2a+2b-ab divides 2ab. (Hint: First show that (2a+2b-ab) [E(c)] = 2ab) Show that the following graphs (64)are planar: a) kg b) ky b) kz c) k2, a, for a>1 Having shown that K2, a is planar, how many faces does it have, as a function of a? (65) (66) Show that a>5 => ka not planar a>3 => k3,a not planar ari3 and bi3 => Ka, b not planar.

(67) Show that a regular graph with regularity r>6 which is also simple and connected can never be a playar graph. (68) Show that if G is a planar connected graph which is face regular with face regularity a, then a) a-2 divides 2/V(G) -4 6) $\alpha = 2 \Rightarrow |\nabla(6)| = 2$

c) $|V(G)| \gg 2 \Rightarrow \alpha \gg 2$ [Hint: First show that $(\alpha - 2) |F(G)| = 2|V(G)| - 4$].

236

MEE7: Applications of linear systems

APPLICATIONS OF LINEAR SYSTEMS

VDC circuits

 Every circuit component is associated with a voltage drop accross that component.
 The circuit components we are interested are:

Name	Notation	$V_{AB} = V_A - V_B$
Generator	A + B	$V_{AB} = -E$
Resistor	A B	$V_{AB} = 1R$
Inductor	A B 	$V_{AB} = L \frac{dI}{dt}$
Capacitor	A B	$V_{AB} = \frac{1}{c} \int^{t} 1 dc$
	I→ I	-00

Method: To calculate the currents around a circuit we work as follows. · Define loop currents IA, IB, etc. associated with each loop. ·2 For each, the sum all of all voltage drops around the loop must be zero. Thus, for each loop, we have an equation. 03 Solve the system of equations to find the loop currents. ·4 From the loop currents we may calculate the branch currents, voltage drops, etc.

Loop A: $\{+E_1 + I_A R_1 + (I_A - I_B)R_2 = 0 \in \}$ Loop B: $(-E_2 + I_B R_3 + (I_B - I_A)R_2 = 0$ $\{=\} \begin{cases} (R_1 + R_2)I_A + (-R_2)I_B = -E_1 \\ (-R_2)I_A + (R_2 + R_3) = E_2 \end{cases}$

$$\begin{bmatrix} IA \\ IB \end{bmatrix} = \frac{1}{delA} \begin{bmatrix} R_2 + R_3 + R_2 \\ + R_2 & R_1 + R_2 \end{bmatrix} \begin{bmatrix} -E_1 \\ E_2 \end{bmatrix}$$
$$= \frac{1}{delA} \begin{bmatrix} -E_1 (R_2 + R_3) + E_2 R_2 \\ -E_1 R_2 + E_2 (R_1 + R_2) \end{bmatrix}$$

$$I_{A} = \frac{-E_{1}(R_{2}+R_{3}) + E_{2}R_{2}}{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}$$

$$I_{B} = \frac{-E_1R_2 + E_2(R_1 + R_2)}{R_1R_2 + R_2R_3 + R_3R_1}$$

- Current through $R_1 : IA$ $R_2 : IA - IB$ $R_3 : IB.$
- Find the necessary and sufficient condition so there is no current through hz. Bolance (=) $I_A - I_B = 0$ (=) $I_A = I_B$ (=) (=) $-E_1 (R_2 + R_3) + E_2R_2 = E_1R_2 + E_2 (R_1 + R_2)$ (=) $E_1R_2 + E_1R_3 - E_2R_2 = E_1R_2 - E_2R_1 - E_2R_2$ (=) $E_1R_3 = -E_2R_1$ (=) $E_4 = -E_2 - E_2R_1 - E_2R_2$ (=) $E_1R_3 = -E_2R_1$ (=) $E_4 = -E_2 - E_2R_1$

EXERCISES

(1) Find the loop currents in the following circuits. a) R_4 R_3 a) R_4 R_3 M_4 R_3 R_4 R_2 R_1 R_2 R_4 $R_3 = a$ $R_4 = R_5 = b$

3 Wheatstone Bridge The Wheatstone bridge be (an used to measure the unknown resistance Rx. G is a goulvanometer measuring voltage drop VAB between Ri B A A and B. Assume the Galvanometer has resistance Rg. (a) Solve for the 3 loop currents in general.
(b) Show that when VAB = 0 then $R_{X} = (R_{g}/R_{1})R_{3}.$

Superposition principle
Any general DC circuit with n loops and m generators gives a linear system of equations of the form
$$\begin{bmatrix} R J = PE \end{bmatrix}$$
with R the resistance matrix (R ∈ Mun(R))
P the source configuration matrix
(P ∈ Mum(IR))
and
$$J = \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_1 \end{bmatrix}$$
and
$$E = \begin{bmatrix} E_1 \\ E_2 \\ \vdots \\ E_m \end{bmatrix}$$
• If R has an inverse then this system has a unique solution
$$J = R^{-1} P E$$
• Thm : Let Ji be the solution when all generators are turned off except
Ei, and similarly for J2, J3, ..., Jn
Then
$$J = J_1 + J_2 + ... + J_n$$

~

$$\frac{Proof}{Define}$$

$$E_{1} = \begin{bmatrix} E_{1} \\ 0 \\ \vdots \\ 0 \end{bmatrix}, E_{2} = \begin{bmatrix} 0 \\ E_{2} \\ \vdots \\ 0 \end{bmatrix}, \dots, E_{m} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ E_{m} \end{bmatrix}$$
Then
$$E = E_{1} + E_{2} + \dots + E_{m}$$
For each problem we get a linear system.
Altogether:
$$\begin{cases} R_{1} = PE_{1} \\ R_{2} = PE_{2} = p \\ \vdots \\ R_{m} = PE_{m} \end{cases}, \int_{1}^{1} = R^{-1}PE_{1} \\ \int_{2} = R^{-1}PE_{2} \\ \vdots \\ \int_{m} = R^{-1}PE = R^{-1}P(E_{1} + E_{2} + \dots + E_{m})$$
It follows that
$$J = R^{-1}PE = R^{-1}P(E_{1} + E_{2} + \dots + E_{m})$$

$$= R^{-1}PE_{1} + R^{-1}PE_{2} + \dots + R^{-1}PE_{m}$$

3--

For
$$n=2$$
: two loops
 $R_{11} = \delta_{11} \sum_{X} R_{1Y} - R_{11} (1 - \delta_{11}) = R_{11} + R_{12}$
 $R_{12} = \delta_{12} \sum_{X} R_{1Y} - R_{12} (1 - \delta_{12}) = -R_{12}$
 $R_{21} = \delta_{21} \sum_{X} R_{2Y} - R_{21} (1 - \delta_{21}) = -R_{21} = -R_{12}$
 $R_{22} = \delta_{22} \sum_{X} R_{2Y} - R_{22} (1 - \delta_{22}) = R_{21} + R_{22}$
 $= R_{12} + R_{22}$
thus $R = \begin{bmatrix} R_{11} + R_{12} & -R_{12} \\ -R_{12} & R_{22} + R_{12} \end{bmatrix}$

در در بر چنان کرد ور در معرف

·

- It is not always true that R has an inverse.
 - e.g. when hu=0 and Re2=0 then det (R)=0 This situation indicates a short-circuit.
- The incidence matrix can be of use if you want to write a computer program that can solve arbitrary circuits.

EXERCISE

(4) Derive the relation between Q and the incidence matrix R for the general n=3 circuit (3 loops). Then colculate and simplify the determinant det (R). Under what conditions is Q singular?

$$E(a_{1}b) = \sum_{k=1}^{N} (y_{k} - (ax_{k}+b))^{2}$$

To minimize E(a, b) we calculate the partial derivatives with respect to a and b:

250
$$\frac{\partial E(a_{1}b)}{\partial a} = \frac{\partial}{\partial a} \sum_{k=1}^{n} \left[y_{k} - (a \times u + b) \right]^{2} =$$

$$= \sum_{k=1}^{n} \left\{ \frac{\partial}{\partial a} \left[y_{k} - (a \times u + b) \right]^{2} \right\} =$$

$$= \sum_{k=1}^{n} \left\{ 2 \left[y_{k} - (a \times u + b) \right] (- \times u) \right\} =$$

$$= \sum_{k=1}^{n} \left[-2 \times u y_{k} + 2a \times u^{2} + 2b \times u \right]$$

$$= -2 \sum_{k=1}^{n} \times u y_{k} + 2a \sum_{k=1}^{n} x_{k}^{2} + 2b \sum_{k=1}^{n} x_{k}$$

$$= -2 \sum_{k=1}^{n} \times u y_{k} + 2a \sum_{k=1}^{n} x_{k}^{2} + 2b \sum_{k=1}^{n} x_{k}$$

$$= -2 \sum_{k=1}^{n} x_{k} y_{k} + 2a \sum_{k=1}^{n} x_{k}^{2} + 2b \sum_{k=1}^{n} x_{k}$$

(see

.

and

$$\frac{\partial E(a,b)}{\partial b} = \frac{\partial}{\partial b} \sum_{k=1}^{h} [y_{k} - (ax_{k}+b)]^{2} = \sum_{k=1}^{n} \left\{ \frac{\partial}{\partial b} [y_{k} - (ax_{k}+b)]^{2} \right\} = \sum_{k=1}^{n} \left\{ \frac{\partial}{\partial b} [y_{k} - (ax_{k}+b)](-1) \right\} = \sum_{k=1}^{n} \left\{ \frac{2}{2} \sum_{k=1}^{n} (-2) y_{k} + 2ax_{k} + 2b \right] = \sum_{k=1}^{n} \left[-2 y_{k} + 2ax_{k} + 2b \right] = -2 \sum_{k=1}^{n} y_{k} + 2a \sum_{k=1}^{n} x_{k} + 2nb = -2 \sum_{k=1}^{n} y_{k} + 2a \sum_{k=1}^{n} x_{k} + 2nb = -2 \sum_{k=1}^{n} y_{k} + 2a \sum_{k=1}^{n} x_{k} + 2nb$$

At the minimum we have

$$\begin{cases} \frac{\partial E(a_{1}b)}{\partial a} = 0 \\ \frac{\partial E(a_{1}b)}{\partial a} = 0 \end{cases} = 0 \begin{cases} -2 \beta_{xy} + 2a \beta_{xx} + 2b \beta_{x} = 0 \\ -2 \beta_{y} + 2a \beta_{x} + 2nb = -0 \end{cases}$$

$$\Leftrightarrow \begin{bmatrix} \beta_{xx} & \beta_{x} \\ \beta_{x} & n \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \beta_{xy} \\ \beta_{y} \end{bmatrix}$$

$$D_{a} = \begin{bmatrix} \beta_{xx} & \beta_{x} \\ \beta_{x} & n \end{bmatrix} = n \beta_{xx} - [\beta_{x}]^{2}$$

$$D_{a} = \begin{bmatrix} \beta_{xy} & \beta_{x} \\ \beta_{y} & n \end{bmatrix} = n \beta_{xx} - [\beta_{x}]^{2}$$

$$D_{b} = \begin{bmatrix} \beta_{xx} & \beta_{xy} \\ \beta_{y} & n \end{bmatrix} = \beta_{xx} \beta_{y} - \beta_{x} \beta_{y}$$

consequently,

$$a = \frac{h Sxy - Sx Sy}{n Sxx - [Sx]^2}$$

$$b = \frac{\beta_{XX} \beta_{Y} - \beta_{XY} \beta_{X}}{n \beta_{XX} - [S_{X}]^{2}}$$

252

• Will we alarays have
$$D = n S_{xx} - L S_{x} I^{2} \neq 0$$
?

Answer: We use the Lagrange identity:

$$\left(\sum_{k=1}^{n} a_{k}^{2}\right)\left(\sum_{k=1}^{n} b_{k}^{2}\right) - \left(\sum_{k=1}^{n} d_{k}b_{k}\right)^{2} =$$

 $K=1$
 $= \frac{1}{2}\sum_{k=1}^{n} \sum_{k=1}^{n} |a_{k}|b_{k}|^{2}$
It follows that

$$D = n \, \beta_{XX} - \left[\beta_{X} \right]_{=}^{q} = (1^{2} + 1^{2} + \dots + 1^{q}) (\chi_{1}^{2} + \chi_{q}^{2} + \dots + \chi_{n}^{q}) - (1_{X_{1}} + 1_{Xq} + \dots + 1_{Xn})^{q} = \frac{1}{2} \sum_{k=1}^{n} \left[1 \quad \chi_{k} \right]_{=}^{q} = \frac{1}{2} \sum_{k=1}^{n} \left[1 \quad \chi_{k} \right]_{=}^{q} = \frac{1}{2} \sum_{k=1}^{n} \left[1 \quad \chi_{k} \right]_{=}^{q} = \frac{1}{2} \sum_{k=1}^{n} \sum_{k=1}^{n} (\chi_{k} - \chi_{k})^{q} \ge 0$$

As long as at least two of $X_1, X_2, ..., Y_n$ are not equal to each other, we see that $D > 0 \Longrightarrow D \neq 0$.

$$\frac{\partial E(a,b)}{\partial a} = -2 \, \beta_{xy} + 2a \, \beta_{xx} + 2b \, \beta_{x}$$

$$\frac{\partial E(a,b)}{\partial b} = -2 \, \beta_{y} + 2a \, \beta_{x} + 2n \, b$$

$$\frac{\partial E(a,b)}{\partial b} = -2 \, \beta_{y} + 2a \, \beta_{x} + 2n \, b$$

$$\frac{\partial E(a,b)}{\partial b} = -2 \, \beta_{xx} , \frac{\partial^{2} E(a,b)}{\partial b} = 2n \, , \text{ and}$$

$$\frac{\partial^{2} E(a,b)}{\partial a \, b} = 2 \, \beta_{x}$$

.

and thus for eq. (1):

$$\frac{3^{2}E(a_{1}b)}{3a^{2}} = 2 \frac{5}{8} \frac{1}{8} \frac{9}{8} \frac{1}{8} \frac{9}{8} \frac{1}{8} \frac{1}{8}$$

 $x, \pi^*.$

255

EXERCISES

(5) Find the least-square fit line given the data a) (-1, -2), (0,0), (1, 2+12) 6) (0,0), (1,1), (2,2+E) c) (1,1), (a,a), (2,2+a) Confirm that given two data points (6) (x,, y,) and (x, 2, y, 2) the least-square fit line corresponds to the line that does in fact go through the two data points (i.e. you have a perfect fit). You will find a = <u>y1-y2</u> + slope X1-Xa 6 = y1- ax1 which corresponds to the line (1): $y - y_1 = \alpha(x - x_1)$ Suppose that your data points are not exact and you are given instead (\overline{f}) (XK± Oxk, YK± Oyk), k=1,2,3,..., n

You may still calculate a, b as usual but because your data is not exact there will be some error in your predicted a and b. So we would atoa, and btog. It can be shown that $\sigma_{\alpha}^{2} = \frac{n}{\sum_{k=1}^{N} \left(\frac{\partial \alpha}{\partial x_{k}}\right)^{2} \sigma_{x_{k}}^{2} + \sum_{k=1}^{N} \left(\frac{\partial \alpha}{\partial y_{k}}\right)^{2} \sigma_{y_{k}}^{2}$ $\sigma_{g}^{2} = \frac{n}{\sum_{k=1}^{n} \left(\frac{\partial b}{\partial x_{k}}\right)^{2} \sigma_{x_{k}}^{2} + \frac{n}{\sum_{k=1}^{n} \left(\frac{\partial b}{\partial y_{k}}\right)^{2} \sigma_{y_{k}}^{2}}$

Calculate the derivortives

Ja, Ja, Jb, Jb Jxk, Jyk, Jxk, Jyk > Obviously, given these derivatives we can write a computer program that finds oa and os in addition to a and & from the data.

257

Appendices

Programming with Matlab

Programming with Matlab

Eleftherios Gkioulekas Mathematical Sciences Computing Center University of Washington

December, 1996

1 Starting Matlab

Matlab is an interactive tool that includes facilities for dealing with numerical analysis, matrix computation, signal processing and graphics. It is meant to be used to understand and test mathematical concepts interactively before coding in a real programming language.

Throughout this tutorial, we will give you an overview of various things and refer you to Matlab's on-line help for more information. The best way to learn is by experimentation, and the best way this tutorial can help you is by telling you the basics and giving you directions towards which you can take off exploring on your own.

To start Matlab type matlab on the shell prompt. You get a greeting on your screen, then a window pops up and goes away ¹ and finally you get a >> prompt. At this point you can start typing in commands on interactive mode or you can quit by typing quit at the prompt. You can also navigate around the filesystem, execute the Matlab programs you have written, and get online help. If you want to log your what you do throughout your matlab session type

>> diary filename

where in filename you put the filename you want to use for your log. To stop logging type

```
>> diary off
```

Moreover you can get on-line help by typing

>> help

on the prompt. A list of topics appears. You can then type **help** again followed with the name of the topic and get more information about what you want to know. For example suppose you type:

```
>> help
[..lots of stuff..]
Matlab/matfun - Matrix functions - numerical linear algebra.
[..lots of other stuff..]
```

 $^{^{1}}$ The reason this happens is because Matlab tries to see if you have an X display. It can do that without popping up a window, but then you wouldn't be as impressed

There you go! Say you want to learn more about the matrix stuff. You type

and you are given a list of commands that are available to you for working with matrices. Then, to learn about the **cond** command you type

>> help cond

and you will be told how to use it to compute condition numbers. For more information about getting help try:

>> help help

Another way of getting help is with the lookfor command. Suppose you want to see what Matlab can do with "eigenvalues". Typing:

>> lookfor eigenvalue

will return to you a list of commands in which the word "eigenvalue" occurs. Note that this command is not very artificially intelligent. If you are looking for your son, typing

>> lookfor son

will not give you what you want

If you are on a machine that can run a web browser, try also:

>> doc

Finally, if Matlab ever does something you don't understand type:

>> why

for a succinct explanation.

Like we said, at the prompt you can also execute your programs. So, let's do that!. Bring up an editor 2 and type in the following Matlab program:

²On a Unix system you can use the following editors: emacs, vi and if available pico. On DOS there is edit. Other systems have (or are supposed to have) a text editor. Warning: You can NOT use a word-processor to type in Matlab programs, unless the word processor allows you to save your document as pure text.

```
%
% These are comments. In Matlab you can add comments with a % character
% This is the standard hello world program
```

```
disp('Hello world!');
```

Save the program with the filename hello.m. You want all your Matlab programs to be saved with the extension .m at the end. Then start Matlab *under the same directory where you saved the file* and type hello at the Matlab prompt. Then you should see the following:

>> hello Hello world! >>

When you terminate a Matlab command with a semicolon, the command will execute silently. When you don't, the command will print back a response. In a matlab program, the former behaviour is desirable. When using Matlab interactively you may want to see these responses. As a general rule of thumb, when you write Matlab programs terminate every statement with a semi-colon and produce the output of interest by invoking the commands whose job is to print things. Such a command would be **disp** for example, which will print **hello** even though it is being "silenced" with a semicolon. We will learn about another printing command later on.

Notice that within the Matlab environment you don't have to type any funny commands to *load* your program. When you start Matlab from your shell, Matlab will load *all* the *.m files that happen to be under the present working directory at startup time. So, all you have to do when the prompt shows up is to type the name of the program (*without the* *.m *extension*) and it will get executed. Note that Matlab will only look for files with the *.m extension, so you are forced to use it. There are no work-arounds for this. Still, Matlab has a provision for the situation where your files are scattered in more than one directory. You can use the Unix cd, ls, pwd commands to navigate in the file system and change your current working directory. Also, if you want to be able to have access at the files on two or more seperate directories *simultaneously* type

>> help path

for more information.

2 Matlab variables

Matlab has three basic data types: strings, scalars and matrices. Arrays are just matrices that have only one row. Matlab has also lots of built-in functions to work with these things. You have already seen the **disp** function in our hello-world program.

Starting with strings, you can assign a string to a variable like this:

name = 'Indiana Jones';

Note that it is a syntax error to quote the string with anything other than the forward quote marks. So, the following are **wrong!**

name = "Indiana Jones"; wrong!
name = 'Indiana Jones'; wrong!

In a Matlab program you can prompt the user and ask him to enter in a string with the **input** command:

```
% This is a rather more social program
%
yourname = input('Hello! Who are you? ','s');
dadname = input('What's your daddy name? ','s');
fprintf(1,'Hail oh %s son of %s the Great! \n',yourname,dadname);
```

The input command takes two arguments. The first argument is the string that you want the user to be prompted with. You could stick in a variable instead of a fixed string if you wanted to. The second argument tells Matlab to expect the user to enter a string. If you omit the second argument, then Matlab will be expecting a number, and upon you entering your name, Matlab will complain. Finally, it *returns* the value that the user enters, and that value is passed on through assignment to the variable yourname.

The fprintf command gives you more flexibility in producing output than the disp command. There is a lot to learn about fprintf so please type help fprintf to learn all you need to know. Briefly, fprintf takes two or three or more arguments. The first argument is a *file descriptor*. File descriptors are integers that reference places where you can send output and receive input from. In Matlab, file descriptor 1 is what you use when you want to send things to the screen. The terminology you may hear is that file descriptor 1 sends things to the *standard output*.

The rest of the arguments depend on what you want to print. If all you want to print is a fixed string, then you just put that in as your second argument. For example:

fprintf(1,'Hello world!\n');

The n sequence will switch you over to the next line. disp will do this automatically, in fprintf you must explicitly state that you wish to go to a new line. This is a feature, since there may be situations where you do *not* want to go to a new line.

If you want to print the values of variables interspersed with your string then you need to put appropriate markers like **%s** to indicate where you want your variables to go. Then, in the subsequent arguments you list the variables in the appropriate order, making sure to match the markers. There are many markers and the Matlab online help will refer you to a C manual. The most commonly used markers are the following:

%s Strings

- %d Integers (otherwise you get things like 5.0000)
- %g Real numbers in scientific notation.

In our example above, we just used %s. You will see further examples later on.

Note that if you merely want to print a variable, it is better to use disp since it will format it for you. fprintf is more useful for those occasions where you want to do the formatting yourself as well as for sending things to a file.

Scalars can be assigned, inputed and printed in a similar fashion. Here is an example:

```
% yet another one of these happy programs
age = input('Pardon for asking but how old are you?');
if (age < 75)
life_left = 365.25*24*(75 - age);
fprintf(1,'You have %g hours left of average life expectancy.\n',life_left);
else
fprintf(1,'Geez! You are that old?!\n');
end
fprintf(1,'Live long and prosper!\n');
```

Note the following:

- String and numeric variables look the same. You don't have to declare the type of the variable anywhere. Matlab will make sure to do *the right thing* (tm).
- When we use input to get the value of a numeric variable we omit the second 's' argument. This way, Matlab will do error-checking and complain if you entered something that's not a number.
- You can use fprintf to print numeric variables in a similar fashion, but you got to use the %g marker. If you are printing an integer you must use the %d marker, otherwise Matlab will stick in a few zeroes as decimal places to your integer. It is obvious that you can mix strings and numbers in an fprintf command, so long as you don't mix up the order of the variables listed afterwards.
- On line

life_left = 365.25*24*(75 - age);

we see how you can do simple computations in Matlab. It's very similar to C and Fortran and to learn more about the operators you have available type

>> help ops >> help relops

• Finally, we have an example of an if statement. We will talk of that more later. The meaning should be intuitively obvious.

In addition to ordinary numbers, you may also have complex numbers. The symbols **i** and **j** are reserved for such use. For example you can say:

z = 3 + 4*i;

or

z = 3 + 4*j;

where i and j represent $\sqrt{-1}$. If you are already using the symbols i and j as variables, then you can get a new complex unit and use it in the usual way by saying:

ii = sqrt(-1);
z = 3 + 4*ii;

3 Arrays in Matlab

Next we talk about arrays. In Matlab arrays are dynamic and they are indexed from 1. You can assign them element by element with commands like:

a(1) = 23; a(2) = input('Enter a(2)'); a(3) = a(1)+a(2);

It is a syntax error to assign or refer to a(0). This is unfortunate since in some cases the 0-indexing *is* more convenient. Note that you don't have to initialize the array or state it's size at any point. The array will make sure to grow itself as you index higher and higher indices.

Suppose that you do this:

a(1) = 10; a(3) = 20;

At this point, a has grown to size 3. But a(2) hasn't been assigned a value yet. In such situations, during growth any unset elements are set to zero. It is good programming practice however not to depend on this and always initialize all the elements to their proper values.

Notice that for the sake of efficiency you might not like the idea of growing arrays. This is because every time the array is grown, a new chunk of memory must be allocated for it, and contents have to be copied. In that case, you can set the size of the array by initializing it with the **zeros** command:

a = zeros(100);

This will set $a(1), a(2), \ldots, a(100)$ all equal to zero. Then, so long as you respect these boundaries, the array will not have to be grown at any point.

Here are some other ways to make assignments to arrays:

x = [3 4 5 6];

will set x equal to an array of 4 values. You can recursively add elements to your array x in various ways if you include x on the right hand side. For example, you can make assignments like

 $x = [x \ 1 \ 2]$ % append two elements at end of the array $x = [1 \ 2 \ x \ 3]$ % append two elements at front, one at back

How about making deletions? Well, first of all notice that we can access parts of the array with the following indexing scheme:

y = x(2:4);

will return the an array of x(2), x(3), x(4). So, if you want to delete the last element of the array, you just have to find the size of the array, which you can do with the size command.

Yet another way to setup arrays is like this:

x = 3 : 1 : 6;

This will set x equal to an array of equidistant values that begin at 3, end at 6 and are separated from each other by steps of 1. You can even make backwards steps if you provide a negative stepsize, like this:

x = 6 : -1 : 3;

It is common to set up arrays like these when you want to plot a function whose values are known at equidistant points.

Finally, to conclude, you may want to know how to load arrays from files. Suppose you have a file that contains a list of numbers separated with carriage returns. These numbers could be the values of a function you want to plot on known values of x (presumably equidistant). You want to load all of these numbers on a vector so you can do things to them. Here is a demo program for doing this:

```
filename = input('Please enter filename:','s');
fd = fopen(filename);
vector = fscanf(fd,'%g',inf);
fclose(fd);
disp(vector);
```

Here is how this works:

- The first line, prompts the user for a filename.
- The **fopen** command will open the file for reading and return a file descriptor which we store at variable **fd**.
- The fscanf command will read in the data. You really need to read the help page for fscanf as it is a very useful command. In principle it is a little similar to fprintf. The first argument is the file descriptor from which data is being read. The second argument tells Matlab, what kind of data is being read. The %g marker stands for real numbers in scientific notation. Finally the third argument tells Matlab to read in the entire file in one scoop. Alternatively you can stick in an integer there and tell Matlab to load only so many numbers from the file.
- The fclose command will close the file descriptor that was opened.
- Finally the disp command will show you what has been loaded. At this point you could substitute with somewhat more interesting code if you will.

Another common situation is data files that contain pairs of numbers separated by carriage returns. Suppose you want to load the first numbers onto one array, and the second numbers to another array. Here is how that is done:

```
filename = input('Please enter filename: ','s');
fd = fopen(filename);
A = fscanf(fd,'%g %g\n',[2,inf]);
x = A(1,:);
y = A(2,:);
fclose(fd);
disp('Here comes x:'); disp(x);
disp('Here comes y:'); disp(y);
```

Again, you need to read the help page for **fscanf** to understand this example better. You can use it in your programs as a canned box until then. What we do in this code snippet essentially is to load the file into a two-column matrix, and then extract the columns into vectors. Of course, this example now leads us to the next item on the agenda: matrices.

4 Matrices in Matlab

In Matlab, arrays are matrices that have only one row. Like arrays, matrices can be defined element by element like this:

a(1,1) = 1; a(1,2) = 0; a(2,1) = 0; a(2,2) = 1;

Like arrays, matrices grow themselves dynamically as needed when you add elements in this fashion. Upon growth, any unset elements default to zero just like they do in arrays. If you don't want that, you can use the **zeros** command to initialize the matrix to a specific size and set it equal to zero, and then take it from there. For instance, the following example will create a zero matrix with 4 rows and 5 columns:

A = zeros(4,5);

To get the size of a matrix, we use the **size** command like this:

[rows,columns] = size(A);

When this command executes, the variable rows is set equal to the number of rows and columns is set equal to the number of columns. If you are only interested in the number of rows, or the number of columns then you can use the following variants of size to obtain them:

```
rows = size(A,1);
columns = size(A,2);
```

Since arrays are just matrices with one row, you can use the size(array,2) construct to get hold of the size of the array. Unfortunately, if you were to say:

s = size(array); % wrong!

it would be wrong, because this returns both the number of rows and columns and since you only care to pick up one of the two numbers, you pick up the number of rows, which for arrays is always equal to 1. Not what you want!

Naturally, there are a few other ways to assign values to a matrix. One way is like this:

A = [1 0 0 ; 0 1 0 ; 0 0 1]

This will set A equal to the 3 by 3 identity matrix. In this notation you list the rows and separate them with semicolons.

In addition to that you can extract pieces of the matrix, just like earlier we showed you how to extract pieces of the arrays. Here are some examples of what you can do:

a = A(:,2); % this is the 2nd column of A b = A(3,:); % this is the 3rd row of A c = A(1:4,3); % this is a 4 by 1 submatrix of A d = A(:,[2 4 10]); % this is the 2nd, 4th and 10th columns of A stacked

In general, if v and w are arrays with integer components, then A(v, w) is the matrix obtained by taking the elements of A with row subscripts from v and column subscripts from w. So:

n = size(A,2); A = A(:,n:-1:1);

will reverse the columns of A. Moreover, you can have **all** of these constructs appear on the left hand side of an assignment and Matlab will do the right thing. For instance

A(:,[3 5 10]) = B(:,1:3)

replaces the third, fifth and tenth columns of A with the first three columns of B.

In addition to getting submatrices of matrices, Matlab will allow you to put together block matrices from smaller matrices. For example if A,B,C,D are a square matrices of the same size, then you can put together a block matrix like this:

M = [A B; C D]

Finally, you can get the transpose of matrix by putting a ' mark next to it. For example:

A = [2 4 1 ; 2 1 5 ; 4 2 6]; Atrans = A';

Matlab provides functions that return many special matrices. These functions are listed in Figure 1 and we urge you to look these up with the help command and experiment.

To display the contents of matrices you can simply use the **disp** command. For example, to display the 5 by 5 Hilbert matrix you want to say:

zeros	Returns the zero matrix
ones	Returns a matrix in which all entries are set equal to one
rand	A matrix with uniformly distributed random elements
randn	A matrix with normally distributed random elements
eye	The identity matrix
compan	Computes the companion matrix
diag	Extract one of the diagonals of a matrix
gallery	Returns a couple of small test matrices. See help page.
hadamard	Returns a Hadamard matrix of any order where N, N/12 or N/20 is a power of 2 $$
hilb	Returns the Hilbert matrices
invhilb	Returns the inverse of Hilbert matrices
pascal	Returns Pascal's triangle
toeplitz	Returns Toeplitz matrices
vander	Returns Vandermonde matrices.

Figure 1: Matrix commands

>> disp(hilb(5))

1.0000	0.5000	0.3333	0.2500	0.2000
0.5000	0.3333	0.2500	0.2000	0.1667
0.3333	0.2500	0.2000	0.1667	0.1429
0.2500	0.2000	0.1667	0.1429	0.1250
0.2000	0.1667	0.1429	0.1250	0.1111

The Hilbert matrix is a famous example of a badly conditioned matrix. It is also famous because the exact inverse of it is known analytically and can be computed with the invhilb command:

>> disp(invhilb(5))

-				
25	-300	1050	-1400	630
-300	4800	-18900	26880	-12600
1050	-18900	79380	-117600	56700
-1400	26880	-117600	179200	-88200
630	-12600	56700	-88200	44100

This way you can interactively use these famous matrices to study concepts such as ill-conditioning.

5 Matrix/Array Operations

• Matrix addition/subtraction: Matrices can be added and subtracted like this:

A = B + C;A = B - C;

It is necessary for both matrices B and C to have the same size. The exception to this rule is when adding with a scalar:

A = B + 4;

In this example, all the elements of B are increased by 4 and the resulting matrix is stored in A.

• Matrix multiplication: Matrices B and C can be multiplied if they have sizes $n \times p$ and $p \times m$ correspondingly. The product then is evaluated by the well-known formula

$$A_{ij} = \sum_{k=1}^{p} B_{ik} C_{kj}, \ \forall i \in \{1, \dots, n\}, \ \forall j \in \{1, \dots, m\}$$

In Matlab, to do this you say:

A = B*C;

You can also multiply all elements of a matrix by a scalar like this:

A = 4*B;A = B*4; % both are equivalent

Since vectors are matrices that are $1 \times n$, you can use this mechanism to take the dot product of two vectors by transposing one of the vectors. For example:

x = [2 4 1 5 3]; y = [5 3 5 2 9]; p = x'*y;

This way, \mathbf{x} ' is now a $n \times 1$ "matrix" and \mathbf{y} is $1 \times n$ and the two can be multiplied, which is the same as taking their dot product.

Another common application of this is to apply $n \times n$ matrices to vectors. There is a catch though: In Matlab, vectors are defined as matrices with one row, i.e. as $1 \times n$. If you are used to writing the matrix product as Ax, then you have to transpose the vector. For example:

```
A = [1 3 2; 3 2 5; 4 6 2]; % define a matrix
x = [2 5 1]; % define a vector
y = A*x; % This is WRONG!
y = A*x'; % This is correct :)
```

• Array multiplication: This is an alternative way to multiply arrays:

 $C_{ij} = A_{ij}B_{ij}, \forall i \in \{1, \dots, n\}, \forall j \in \{1, \dots, m\}$

This is not the traditional matrix multiplication but it's something that shows up in many applications. You can do it in Matlab like this:

C = A.*B;

• Array division: Likewise you can divide arrays in matlab according to the formula:

$$C_{ij} = \frac{A_{ij}}{B_{ij}}, \forall i \in \{1, \dots, n\}, \forall j \in \{1, \dots, m\}$$

by using the ./ operator like this:

C = A./B;

• Matrix division: There are two *matrix division* operators in Matlab: / and \. In general

 $X = A \setminus B$ is a solution to A * X = BX = A/B is a solution to X * A = B

This means that $A \setminus B$ is defined whenever B has as many rows as A. Likewise A/B is defined whenever B has as many columns as A. If A is a square matrix then it is factored using Gaussian elimination. Then the equations A * X(:,j) = B(:,j) are being solved for every column of B. The result is a matrix with the same dimensions as B. If A is not square, it is factored using the Householder orthogonalization with column pivoting. Then the corresponding equations will be solved in the least squares fit sense. Right division A/B in Matlab is computed in terms of left division by $A/B = (A' \setminus B')'$. For more information type

>> help slash

- Matrix inverse: Usually we are not interested in matrix inverses as much as applying them directly on vectors. In these cases, it's best to use the matrix division operators. Nevertheless, you can obtain the inverse of a matrix if you need it by using the inv function. If A is a matrix then inv(A) will return it's inverse. If the matrix is singular or close to singular a warning will be printed.
- Matrix determinants: Matrix determinants are defined by

$$\det(A) = \sum_{\sigma \in S_n} \left\{ \operatorname{sign}(\sigma) \prod_{i=1}^n A_{i\sigma(i)} \right\}$$

where S_n is the set of permutations of the ordered set (1, 2, ..., n), and $sign(\sigma)$ is equal to +1 if the permutation is even and -1 if the permutation is odd. Determinants make sense only for square matrices and can be computed with the **det** function:

a = det(A);

• Matrix exponential function: These are some very fascinating functions. The *matrix* exponential function is defined by

$$\exp(A) = \sum_{k=0}^{+\infty} \frac{A^k}{k!}$$

where the power A^k is to be evaluated in the *matrix product* sense. Recall that your ordinary exponential function is defined by

$$e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$$

which converges for all x (even when they are complex). It is **not** obvious from this that the corresponding matrix expression also converges. But it does, and the result is the *matrix* exponential. The matrix exponential can be computed in Matlab with the expm function. It's usage is as simple as:

Y = expm(X);

Matrix exponentials show up in the solution of systems of differential equations.

Matlab has a *plethora* of commands that do almost anything that you would ever want to do to a matrix. And we have only discussed a subset of the operations that are permitted with matrices. The following help calls should be helpful in exploring what Matlab offers:

```
>> help elmat
>> help matfun
>> help sparfun
```

We will go into a detailed discussion about matrices and linear algebra in Matlab, on a separate tutorial.

6 Flow control in Matlab

So far, we have spent most of our time discussing the data structures available in Matlab, and how they can be manipulated, as well as inputted and outputed. Now we continue this discussion by discussing how Matlab deals with *flow control*.

• For loops: In Matlab, a for-loop has the following syntax:

```
for v = matrix
statement1;
statement2;
....
end
```

The columns of the matrix are stored one at a time in the variable, and then the statements up to the end statement are executed. If you wish to loop over the rows of the matrix then you simply transpose it and plug it in. It is recommended that the commands between the for statement and the end statement are indented by one space so that the reader of your code can visually see that these statements are enclosed in a loop.

In many cases, we use arrays for matrices, and then the for-loop reduces to the usual for-loop we know in languages like Fortran and C. In particular using expressions of the form X:Y will effectively make the loop variable be a scalar that goes from X to Y. Using an expression of the form start:step:stop will allow you to loop a scalar from value start all the way to value stop with stepsize step. For instance the Hilbert matrix is defined by the equation:

$$A_{ij} = \frac{1}{i+j+1}$$

If we didn't have the hilb command, then we would use *for-loops* to initialize it, like this:

```
N = 10;
A = zeros(N,N);
for i = 1:N
for j = 1:N
    A(i,j) = 1/(i+j-1);
end
end
```

The same code can be rewritten more consistely like this:

N = 10; A = zeros(N,N); for i = 1:N , for j = 1:N , A(i,j) = 1/(i+j-1); , end, end

Note that the **for** and **end** statements in the long-winded version of the example are being separated by *newlines* and not semicolons. To obtain the consise version, we merely substitute those newlines with *commas*.

• While loops: In Matlab while loops follow the following format:

```
while variable
  statement1;
  statement2;
  ....
  statementn;
end
```

where **variable** is almost always a *boolean expression* of some sort. In Matlab you can compose boolean expressions as shown in Figure 2.

Here is an example of a Matlab program that uses the while loop:

a == b	True when a equals b
a > b	True when a is greater than b
a < b	True when a is smaller than b
a <= b	True when a is smaller or equal to b
a >= b	True when a is greater or equal to b
a = b	True when a is not equal to b
a & b	True when both boolean expressions a and b are true
a b	True when at least one of a or b is true.
a xor b	True only when only one of a or b is true.
а	True when a is false.

Figure 2: Some boolean expressions in Matlab

```
n = 1;
while prod(1:n) < 1.e100
n = n + 1;
end
disp(n);
```

This program will display the first integer for which n! is a 100-digit number. The prod function takes an array (or matrix) as argument and returns the product of it's elements. In this case, prod(1:n) is the factorial n!.

• If and Break statements: The simplest way to set-up an if branch is like this:

```
if variable
statement1;
....
statementn;
end
```

The statements are executed only if the real part of the variable has all non-zero elements. ³ Otherwise, the program continues with executing the statements right after the end statement. The variable is usually the result of a boolean expression. The most general way to do ifbranching is like this:

```
if variable
statement1;
```

 $^{^{3}}$ Note that in the most general case, variable could be a complex number. The if statement will only look into its real part

```
statementn;
elseif variable2
statement1;
.....
statementn;
[....as many elseifs as you want...]
else
statement1;
.....
statementn;
end
```

In this case, if variable is true, then the statements right after it will execute until the first else or elseif (whichever comes first), and then control will be passed over to the statements after the end. If variable is not true, then we check variable2. Now, if that one is true, we do the statements following thereafter until the next else or elseif and when we get there again we jump to end. Recursively, upon consecutive failures we check the next elseif. If all the elseif variables turn out to be false, then we execute the statements after the else. Note that the elseifs and/or the else can be omitted all together.

Here is a general example that illustrates the last two methods of flow control.

```
% Classic 3n+1 problem from number theory
while 1
n = input('Enter n, negative quits. ');
if n <= 0, break, end
while n > 1
if rem(n,2) == 0 , n = n/2;
else, n = 3*n+1;
end
end
end
```

This example involves a fascinating problem from number theory. Take any positive integer. If it is even, divide it by 2; if it is odd, multiply it by 3 and add 1. Repeat this process until your integer becomes a 1. The fascinating unsolved problem is: Is there any integer for which the process does not terminate? The conjecture is that such integers do not exist. However nobody has managed to prove it yet.

The rem command returns the remainder of a Euclidean division of two integers. (in this case n and 2)

7 Functions in Matlab

Matlab has been written so that it can be extended by the users. The simplest way to do that is to write *functions* in Matlab code. We will illustrate this with an example: suppose you want to create a function called **stat** which will take an array and return it's mean and standard deviation. To do that you must create a file called **stat**.m. The file has to have the same name as the function you are defining, and the function definition is the only thing you can put in that file!. Then in that file, say the following:

```
function [mean, stdev] = stat(x)
% stat -- mean and standard deviation of an array
%
    The stat command returns the mean and standard deviation of the
%
    elements of an array. Typical syntax is like this:
%
    [mean,dev] = stat(x);
%
% See also: foo, gleep, bork
[m,n] = size(x);
if m == 1
m = n;
end
mean = sum(x)/m;
stdev = sqrt(sum(x.^2)/m - mean.^2);
```

The first line of the file should have the keyword function and then the syntax of the function that is being implemented. Notice the following things about the function syntax:

- Functions can have an arbitrary number of arguments. In this case there is only one such argument: **x**. The arguments are being passed by *value*: The variable that the calling code passes to the function is *copied* and the copy is being given to the function. This means that if the function internally changes the value of **x**, the change will **not** reflect on the variable that you use as argument on your main calling code. Only the copy will be changed, and that copy will be discarded as soon as the function completes it's call.
- Of course it is not desirable to only pass things by value. The function has to communicate some information back to the calling code. In Matlab, the variables on the right hand side, listed in brackets, are also being passed to the function, but this is done **by reference**: The function is not given a *copy* of the variables but it is actually given the variables *themselves*. This means that that any changes made to those variables while inside the function will reflect on the corresponding variables on the calling code. So, if one were to call the function with:

a = 1:20; m = 0; s = 0; [m,s] = stat(a); then the values of the variables m and s would change after the call to stat.

• The lines afterwords are comments. However, these comments are what will be spit out if you type

>> help stat

on your prompt. You usually want to make the first comment line be a summary of what the function does because in some instances only the first line will get to be displayed, so it should be complete. Then in the lines afterwords, you can explain how the function is meant to be used.

• After you are done with documentation you type in your usual Matlab code that will implement the function.

The main problem with Matlab function definitions is that you are forced to put every function in a separate file, and are even restricted in what you can call that file. Another thing that could cause you problems is *name collision*: What if the name you choose for one of your functions happens to be the name of an obscure built-in Matlab function? Then, your function will be completely ignored and Matlab will call up the built-in version instead. To find out if this is the case use the which command to see what Matlab has to say about your function.

Many of the examples we saw earlier would be very useful if they were to implemented as functions. For instance, if you commonly use Matlab to manipulate data that come out in (x, y) pairs you can make our earlier example into a function like this:

```
function [x,y] = load_xy(filename)
% load_xy -- Will allow you to load data stored in (x,y) format
% Usage:
% Load your data by saying
%
    [x,y] = load_xy(filename)
\% where 'filename' is the name of the file where the data is stored
\% and 'x' and 'y' are the vectors where you want the data loaded into
fd = fopen(filename);
А
  = fscanf(fd,'%g %g\n',[2,inf]);
  = A(1,:);
х
  = A(2,:);
у
fclose(fd);
```

You would have to put this in a file called load_xy.m of course. Suppose that after making some manipulations you want Matlab to save your data on file again. One way to do it is like this:

```
function save_xy(filename,x,y)
% save_xy -- Will let your save data in (x,y) format.
% Usage:
% If x and y are vectors of equal length, then save them in (x,y)
```

```
% format in a file called 'filename' by saying
% save_xy(filename,x,y)
fd = fopen(filename,'w');
A(1,:) = x;
A(2,:) = y;
fprintf(fd,'%g %g\n',A);
fclose(fd);
```

Notice that it is not necessary to use a for loop to fprintf or fscanf the data one by one. This is explained in detail in the on-line help pages for these two commands. In many other cases Matlab provides ways to eliminate the use of for-loops and when you make use of them, your programs will generally run faster. A typical example is *array promotion*. Take a very simple function

function y = f(x)

which takes a number x and returns another number y. Typical such functions are sin, cos, tan and you can always write your own. Now, if instead of a number you plug in an array or a matrix, then the function will be applied on every element of your array or matrix and an array of the same size will be returned. This is the reason why you don't have to specify in the function definition whether x and y are simple numbers, or arrays in the first place! To Matlab everything is a matrix as far as functions are concerned. Ordinary numbers are seen as 1x1 matrices rather than numbers. You should keep that in mind when writing functions: sometimes you may want to multiply your x and y with the .* operator instead of the * to handle array promotion properly. Likewise with division. Expect to be surprised and be careful with array promotion.

Let's look at an example more closely. Suppose you write a function like this:

function x = foo(y,z)
x = y+z;

Then, you can do the following on the Matlab prompt:

```
>> disp(foo(2,3))
    5
>> a = 1:1:10;
>> b = 1:2:20;
>> disp(foo(a,b))
    2   5   8   11  14  17  20  23  26  29
```

What you will *not* be allowed to do is this:

```
>> a = 1:1:10
>> b = 1:1:20
>> disp(foo(a,b))
??? Error using ==> +
Matrix dimensions must agree.
```

Error in ==> /home/lf/mscc/matlab/notes/foo.m
On line 2 ==> x = y+z;

The arguments \mathbf{a} and \mathbf{b} can not be added because they don't have the same size. Notice by the way that we used addition as our example on purpose. We challenge you to try * versus .* and see the effects!

One use of functions is to build complex algorithms progressively from simpler ones. Another use is to automate certain commonly-used tasks as we did in the example of loading and saving (x, y) pairs. Functions do not solve all of the worlds problems, but they can help you a lot and you should use them when you have the feeling that your Matlab program is getting too long and complicated and needs to be broken down to simpler components. Algorithms with Matlab

Algorithms with Matlab

Eleftherios Gkioulekas Mathematical Sciences Computing Center University of Washington

December, 1996

1 Introduction

Numerical analysis is the branch of mathematics whose goal is to figure out how computers can solve problems in a way that's fast, efficient and accurate. *Linear algebra* is a large part of numerical analysis, because many problems eventually reduce to one of the following linear algebra problems: • We want to solve a system of linear equations.

• We want to solve an eigenvalue problem.

For this reason, researchers think of these problems as "elementary" the way you would think of addition and multiplication elementary enough to use a calculator. Likewise, researchers will use a "calculator" in some sense of the word. Matlab can serve as such a calculator. Beyond Matlab you have the option of using software libraries. Such libraries exist for most commonly used languages like C++ (e.g. LAPACK++) and FORTRAN (e.g. LINPACK, EISPACK). For more information about the latter visit the Netlib repository at http://www.netlib.org/ or send email to netlib@ornl.gov with one line that says send index.

In this tutorial we are assuming that you have read and understood the "*Programming with Matlab*" tutorial. The purpose of this tutorial is to review the mathematical concepts of linear algebra to give you a feel for the "big picture" and at the same time show you how you can experiment with these concepts using Matlab. As you will see, these problems are not quite "elementary"

2 Basic concepts

A complex matrix **A** of size $n \times m$ is a mapping

$$\mathbf{A}: \{1,\ldots,n\} \times \{1,\ldots,m\} \mapsto \mathcal{C}$$

where C is the set of complex numbers. In other words, a matrix will take two integers i and j such that $1 \leq i \leq n$ and $1 \leq j \leq m$ and return back a complex number. That number we denote with a_{ij} (we use the lowercase letter). The set of all $n \times m$ complex matrices is denoted as $C^{n \times m}$. If we restrict ourselves to real values only, then we are dealing with *real matrices* and the set of these is

denoted as $\mathcal{R}^{n \times m}$. Finally, for the sake of notation, we will denote the set of all integers from 1 to n with the symbol:

$$[n] = \{1, \ldots, n\}$$

In Matlab all data structures are matrices. In particular ordinary numbers are 1×1 matrices, vectors (or "arrays" in general) are $1 \times n$ matrices. The *Programming with Matlab* tutorial has covered the basics of how all these data structures are setup in Matlab.

There exist various operations defined for matrices:

Definition 1 (a) Let $\mathbf{A}, \mathbf{B} \in \mathcal{C}^{n \times m}$ be two matrices. The sum and difference of these matrices is:

$$\mathbf{C} = \mathbf{A} + \mathbf{B} \iff c_{ij} = a_{ij} + b_{ij}, \ \forall (i, j) \in [n] \times [m]$$

$$\mathbf{C} = \mathbf{A} - \mathbf{B} \iff c_{ij} = a_{ij} - b_{ij}, \ \forall (i, j) \in [n] \times [m]$$

(b) Let $\mathbf{A} \in \mathcal{C}^{n \times m}$ and $\mathbf{B} \in \mathcal{C}^{m \times p}$. The product of these matrices is

$$\mathbf{C} = \mathbf{AB} \iff c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}, \ \forall (i,j) \in [n] \times [p]$$

(c) The transpose of a matrix $\mathbf{A} \in \mathcal{C}^{n \times m}$ is:

$$\mathbf{B} = \mathbf{A}^T \iff b_{ij} = a_{ji}, \ \forall (i,j) \in [n] \times [m]$$

(d) The hermitian or complex conjugate transpose is:

$$\mathbf{B} = \mathbf{A}^H \Longleftrightarrow b_{ij} = a_{ji}^*, \ \forall (i,j) \in [n] \times [m]$$

Moreover, there are the following important classes of matrices that we will see mentioned later on:

Definition 2 A matrix $\mathbf{A} \in C^{n \times n}$ is: (a) symmetric $\iff \mathbf{A} = \mathbf{A}^T$ (b) hermitian $\iff \mathbf{A} = \mathbf{A}^H$ (c) orthogonal $\iff \mathbf{A}\mathbf{A}^T = \mathbf{A}^T\mathbf{A} = \mathbf{I}$ (d) unitary $\iff \mathbf{A}\mathbf{A}^H = \mathbf{A}^H\mathbf{A} = \mathbf{I}$ (e) normal $\iff \mathbf{A}\mathbf{A}^H = \mathbf{A}\mathbf{A}^H$

For real matrices, hermitian means the same as symmetric, unitary means the same as orthogonal, and *both* of these distinct classes are normal.

In Matlab matrices that are stored in A and B can be added or multiplied quite simply by saying:

C = A + B; C = A - B;C = A * B; The *transpose* and the *hermitian* of a matrix can be obtained by

B = A.'; % transpose
B = A'; % hermitian

The usual rules apply to these operations except for the following:

• Multiplication is not commutative for all matrices. That is there exist matrices such that

 $\mathbf{AB}\neq\mathbf{BA}$

• Square matrices don't always have a *multiplicative inverse*. A multiplicative inverse is defined by:

$$\mathbf{B} = \mathbf{A}^{-1} \iff \mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{I}$$

The first exception is not very interesting, but the second one is related to one of the two "Big Questions" in linear algebra: Solving linear systems of equations.

3 Matrix inversion is not easy

Suppose that $\mathbf{A} \in \mathcal{C}^{n \times n}$ is a square matrix and $\mathbf{x}, \mathbf{b} \in \mathcal{C}^{n \times 1}$ are vectors (actually, column matrices). If \mathbf{A} and \mathbf{b} are known, then we want to find an \mathbf{x} such that

Ax = b

If \mathbf{A} has an inverse then \mathbf{x} is unique and given by:

 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

otherwise \mathbf{x} will either not exist, or will not be unique.

In order for a matrix to have an inverse, the matrix has to be square. Given that, the existence of matrix inverses is determined by a quantity called *determinant*. The determinant is defined in terms of *permutations* so we must explain what these are first. A permutation $\sigma \in S_n$ of order n is a bijection that maps:

$$\sigma: [n] \mapsto [n]$$

The set of permutations of order n is written as S_n and it has n! elements. In simple terms, take an ordered set of integers say (1, 2, 3, 4, 5) and reorder it to (4, 1, 3, 2, 5). Our concept of how we reordered an ordered set of things is what is being modeled by permutations. There are as many permutations as there are ways in which we can reorder things. One way to represent permutations is by showing reorderings of (1, 2, ..., n). For example the permutations of order 3 are:

$$S_3 = \{(1, 2, 3), (2, 3, 1), (3, 1, 2), (1, 3, 2), (3, 2, 1), (2, 1, 3)\}$$

Permutations have an important property called *parity*. If $\sigma \in S_n$ is a permutation then we define the parity to be equal to:

$$s(\sigma) = \operatorname{sign} \prod_{j=1}^{n-1} \prod_{i=j+1}^{n} (\sigma(i) - \sigma(j))$$

When the parity is +1 we talk of *even* permutations. When it is -1 we talk of *odd* permutations. You can verify that the even permutations in S_3 are

$$\{(1,2,3),(2,3,1),(3,1,2)\}$$

and the odd ones are

$$\{(1,3,2), (3,2,1), (2,1,3)\}$$

Given these definitions, the determinant of a matrix $\mathbf{A} \in \mathcal{C}^{n \times n}$ is defined by:

$$\det(\mathbf{A}) = \sum_{\sigma \in S_n} s(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

Unfortunately, this is not the most useful definition in terms of numerics. There are n! terms to add, and every one of these terms involves n multiplications. This will overwhelm any computer soon enough, not to mention round-off errors. You have probably seen many recursive definitions of the determinant in other courses. Those are not helpful either because they also involve work that increases by n!.

Most computations of determinants are based on the following theorem:

Theorem 1 Let $\mathbf{A}, \mathbf{B} \in \mathcal{C}^{n \times n}$ be two square matrices. Then,

$$\det(\mathbf{AB}) = \det(\mathbf{A})\det(\mathbf{B})$$

We write our matrix as a product of matrices whose determinants are easy to compute and apply the theorem. More on this later.

Now the reason why determinants are important is because of this theorem:

Theorem 2 Let $\mathbf{A} \in \mathcal{C}^{n \times n}$ be a square matrix.

$$\mathbf{A}^{-1}$$
 exists $\iff \det(\mathbf{A}) \neq 0$

Notice by the definition that the determinant varies continuously as you vary one of the elements of the matrix. This means that determinants are quite reasonable functions of n^2 variables which has the following implication: Most of the time, the determinant will be quite nonzero and an inverse will exist. Sometimes, the determinant will be very close to zero and an inverse will exist but will be so sensitive to the original matrix that it will be hard to compute. In this case we say we have an *ill-conditioned* matrix. Finally, on very rare matrices the determinant will be *exactly* zero and then the inverse just doesn't exist. In this case we have a *singular* matrix. These last two cases cause trouble from a numerical point of view. To make matters worse, deciding numerically which case is which is not trivial either.

In Matlab computing determinants and inverses may appear innocuously simple. If ${\tt A}$ is your matrix then

x = det(A);

will compute the determinant and

$$B = inv(A);$$

will return the inverse. However, for ill-conditioned matrices, inv will not give you the correct inverse. *Sometimes* Matlab will detect this, but not always.

There exists a class of square matrices $\mathbf{H}^{(n)}$ called the *Hilbert matrices* that are defined by:

$$h_{ij} = \frac{1}{i+j-1}$$

The matlab command hilb will return a Hilbert matrix of any size. That is:

A = hilb(10);

will return a Hilbert matrix of size 10. These matrices have two properties: Inverting them is very sensitive to floating point error but there is an analytic equation that gives their exact inverse! The inverse is given by

$$\tilde{h}_{ij} = \tilde{h}_{ji} = \frac{r_{ij}}{i+j-1} , \forall \ 1 \le i \le j \le n$$

where r_{ij} is defined for j > i by the following recurrences:

$$\begin{cases} r_{i,i} = p_i^2 \\ r_{ij} = -\frac{(n-j+1)(n+j-1)}{(j-1)^2} r_{i,j-1}, \ j > i \end{cases} \begin{cases} p_0 = n \\ p_i = \frac{(n-i+1)(n-i-1)}{(i-1)^2} p_{i-1}, \ 1 \le i \le n \end{cases}$$

This computation is being done by the invhilb command. For example, for n = 10 you would say:

A = invhilb(10);

We can use these matrices to show you the limitations of the **inv** command. Try the following program:

```
for i = 1:20
x = max(max(abs(invhilb(i)-inv(hilb(i)))));
fprintf(1,'For size i = %d deviation is x = %g \n',i,x);
end
```

This program will progressively increase the matrix size and attempt to invert the matrix. Then it will compare it with the exact known inverse and report the worst value of the element by element difference. The output of the program is:

```
For size i = 1 deviation is x = 0
For size i = 2 deviation is x = 3.55271e-15
For size i = 3 deviation is x = 6.82121e-13
For size i = 4 deviation is x = 5.96629e-10
```

Notice that the deviation managed to increase all the way to 3.657e+08 before Matlab started giving out warnings. Not good! There are two or three sets of errors involved here:

- The errors caused by representing hilb(n)
- The errors caused in the matrix inversion process
- The errors, if any, in representing invhilb(n)

It turns out that the first of these, which involves representing fractions like 1/3 and 1/5 in floatingpoint, is the most significant. This error is propagated throughout the matrix inversion and is significantly amplified.

The moral of the story: Sometimes computers don't answer the question you think you are asking them. You think you are asking the computer to find the inverse. When you use the inv function, you are asking it to apply an algorithm which *you* believe will give you the inverse.

Exercise 1 Write a Matlab function that implements the recurrence formula for the inverse Hilbert matrix. Compare your results with the invhilb command.

Exercise 2 Can we trust the det function in evaluating the determinant for the Hilbert matrix? Look at the errors in computing: det(hilb(n))*det(invhilb(n)) and det(hilb(n)*invhilb(n)) Which is more accurate? Why?

4 Algorithms related to solving linear systems

After spending all this time talking about inverses, we need to tell you a little secret: we rarely ever compute inverses explicitly, because even if we did, multiplying them with other vectors or with the original matrix itself is susceptible to many floating point errors. In most problems our main goal is to solve the system

$$Ax = b$$

and we can do this without computing the inverse. The purpose of our earlier discussion was to alert you that there are difficulties we have to overcome: it's hard to compute determinants, so
Cramer rule is out of the question; matrices can be nasty and matrix inversion can be error-prone. Now we come to the techniques that help us deal with these difficulties.

The techniques are quite involved, and Matlab wants to hide the complexity for the user. Therefore, Matlab uses the backslash operator to do the job

 $x = A \ ;$

This will work provided that the matrix \mathbf{A} is well-behaved. However, in order for Matlab to be flexible, they provide you with further access to particular techniques that you may want to use to do matrix inversions by yourself.

4.1 LU decomposition

One technique is with the LU decomposition. The idea here is that we write **A** as the product of a lower triangular matrix **L** with 1 in the diagonal, and an upper triangular matrix **U**. Then we reduce our problem to the following two systems of equations:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \Longleftrightarrow \mathbf{L}\mathbf{U}\mathbf{x} = \mathbf{b} \Longleftrightarrow \left\{ egin{array}{c} \mathbf{L}\mathbf{y} = \mathbf{b} \\ \mathbf{U}\mathbf{x} = \mathbf{y} \end{array}
ight.$$

These systems can be solved directly without having to find the inverse. As a matter of fact, given the LU decomposition of a matrix you can find the inverse of \mathbf{A} by rewritting the equation

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

as n linear systems involving the unknown columns of \mathbf{A}^{-1} . Also, since the diagonal elements of \mathbf{L} are 1 and since \mathbf{U} is upper triangular, the determinant of \mathbf{A} can be determined by:

$$\det(\mathbf{A}) = \det(\mathbf{L}) \det(\mathbf{U}) = \det(\mathbf{U}) = \prod_{i=1}^{n} u_{ii}$$

The work involved in computing the LU decomposition increases by $O(n^3)$ which is a vast improvement over O(n!). In Matlab, the LU decomposition can be computed with the command:

$$[L,U] = lu(A);$$

Unfortunately, there is a wrinkle with this method as well as with the matrix \mathbf{L} returned by Matlab that has to do with the LU decomposition existance theorem. That theorem states:

Theorem 3 Let $\mathbf{A} \in \mathcal{C}^{n \times n}$ be a square matrix and $\mathbf{A}_k \in \mathcal{C}^{k \times k}$ be the $k \times k$ submatrix of \mathbf{A} containing the upper left part. Then,

A has an LU decomposition
$$\iff \forall k \in [n] : \det(\mathbf{A}_k) \neq 0$$

There are many cases where the condition of this theorem will almost fail: one of the submatrix determinants will be close to zero. The workaround is to permute the rows and columns of A in

such a way so that these determinants turn out okey. When you do that you essentially find the LU decomposition of a new matrix \mathbf{PA} where \mathbf{P} is a permutation matrix. Permutation matrices have one 1 located in each row and column and when they are applied to another matrix, they permute the other matrix's rows or columns. Since permutations are easy to undo, \mathbf{P} is yet-anothermatrix that's easy to invert: It's inverse is $\mathbf{P}^{-1} = \mathbf{P}^T$. When you run the matlab function \mathbf{lu} as quoted above, it will not really return an actual lower triangular matrix in L. Instead it will do the decomposition $\mathbf{PA} = \mathbf{LU}$ and return back $\mathbf{P}^{-1}\mathbf{L}$ and \mathbf{U} !. If you don't like that, you can call \mathbf{lu} like this:

[L,U,P] = lu(A);

Now, \mathbf{L} will be an actual lower triangular matrix and \mathbf{P} will be a permutation matrix, and the actual decomposition will be

 $\mathbf{A} = \mathbf{P}^T \mathbf{L} \mathbf{U}$

The solution to our system of linear equations then is:

$$\mathbf{x} = \mathbf{U}^{-1}\mathbf{L}^{-1}\mathbf{P}\mathbf{b}$$

Now we have a problem: Matlab doesn't have documented facilities for applying \mathbf{L}^{-1} and \mathbf{U}^{-1} with the well-known back/forward-substitution algorithms. Typically, if you want to solve a system of equations with this method, the backslash operator will do it all in one scoop. However, suppose that you want to solve *many* systems of linear equations in which \mathbf{A} is the same and only \mathbf{b} vary. Then, you can have a more efficient program going if do the LU decomposition once and use the L,U,P arrays on each different vector \mathbf{b} . You can write your own function to do that. Then again, if efficiency is such a concern, then perhaps it's time to switch to a programming language.

4.2 QR decomposition

Another technique is the QR decomposition. This method will decompose **A** to an orthogonal matrix **Q** and a right-triangular matrix **R**. That **Q** is orthogonal means that:

$$\mathbf{Q}^{-1} = \mathbf{Q}^T$$

which makes it easy to invert. Also \mathbf{R} can be easily inverted being a right-triangular matrix, so by rewriting a linear-systems problem as

$$\mathbf{R}\mathbf{x} = \mathbf{Q}^T \mathbf{b}$$

we can solve it, following the footsteps of the LU technique. You can also compute determinants. It turns out that

$$\det(\mathbf{Q}) = 1$$

 \mathbf{SO}

$$\det(\mathbf{A}) = \det(\mathbf{R}) = \prod_{i=1}^{n} r_{ii}$$

The QR method requires twice as many operations as LU, so LU is more commonly used. However, as you will learn in your numerical methods course, there are many other instances where QR decompositions can come in handy. One application of QR decompositions is in obtaining an orthonormal basis to a vector space. If you think of the columns of \mathbf{A} and the columns of \mathbf{Q} as vectors, then both sets of vectors span the same space. The difference is that the vectors obtained through matrix \mathbf{Q} are orthogonal with one another.

To do a QR decomposition in Matlab call:

$$[Q,R] = qr(A);$$

This will produce two matrices \mathbf{Q} and \mathbf{R} such that $\mathbf{A} = \mathbf{QR}$. Matlab provides a few variations to this call:

$$[Q,R,P] = qr(A);$$

will produce a permutation matrix \mathbf{P} , and return in \mathbf{Q} and \mathbf{R} the QR decomposition of \mathbf{AP} . The permutation matrix is chosen so that the absolute values of the diagonal elements $|r_{ii}|$ is decreasing as *i* increases.

4.3 Cholesky decomposition

When a matrix $\mathbf{A} \in \mathcal{R}^{n \times n}$ is symmetric and positive definite it has a more efficient triangular decomposition. Symmetric means that

$$a_{ij} = a_{ji}, \forall i, j \in [n]$$

and positive definite means that

$$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \forall \mathbf{x} \in \mathcal{R}^{n \times 1}$$

If both conditions are true, then A can be decomposed to

 $\mathbf{A} = \mathbf{R}^T \mathbf{R}$

where \mathbf{R} is an upper triangular matrix and \mathbf{R}^T is the transpose. In complex matrices, you must use the complex conjugate transpose instead. The Cholesky algorithm will attempt to compute this decomposition. The algorithm can self-detect when it fails, and in practice this ability is used to establish whether symmetric matrices *are* positive definite. In Matlab, you can invoke the Cholesky algorithm with the **chol** command:

R = chol(A);

If the algorithm fails, Matlab will issue a warning. You can suppress the warning by calling chol like this:

[R,p] = chol(A)

If p is non-zero, then this means that the cholesky algorithm failed and the original matrix is not positive definite. Positive definiteness is an important property. Many theorems in linear algebra are known for positive definite matrices, and many times it is useful to be able to decide numerically whether a symmetric matrix is positive definite. Also, when we *know* that the matrix **A** in a system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is positive definite, we can use this method to solve the system; it would be faster than LU.

4.4 SVD decomposition

To conclude, another very useful decomposition is the SVD decomposition. The theorem behind SVD decompositions states:

Theorem 4 If $\mathbf{A} \in \mathcal{R}^{m \times n}$ then there exist two orthogonal matrices $\mathbf{U} \in \mathcal{R}^{m \times m}$ and $\mathbf{V} \in \mathcal{R}^{n \times n}$ such that

$$\mathbf{U}^T \mathbf{A} \mathbf{V} = diag(\sigma_1, \sigma_2, \dots, \sigma_p) \in \mathcal{R}^{m \times n}$$

where $p = \min\{m, n\}$ and $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_p \ge 0$.

To compute the SVD decomposition of a matrix **A** in matlab you use the svd function as follows:

$$[U,S,V] = svd(A);$$

where S will be a diagonal matrix containing the σ_i . If you only want to look at the σ_i , then do

$$s = svd(A);$$

This call will return an array containing just the σ_i . Given the SVD decomposition, the inverse of a square nonsingular matrix **A** can be computed with:

$$\mathbf{A}^{-1} = \mathbf{V} \cdot [diag(1/\sigma_i)] \cdot \mathbf{U}^T$$

and the solution to a linear system Ax = b becomes:

$$\mathbf{x} = \mathbf{V} \cdot [diag(1/\sigma_i)] \cdot \mathbf{U}^T \mathbf{b}$$

The reason why SVD is important is because it can diagnose two pathologies: *ill-conditioning* and *singularity*. That you can tell from the *condition number* which is defined by:

$$\operatorname{cond}(\mathbf{A}) = \frac{\max\{\sigma_i\}}{\min\{\sigma_i\}}$$

When the condition number is too large, i.e. close to $1/\epsilon$ where ϵ is the floating point accuracy, then we say that the matrix is *ill-conditioned*. When this happens, merely computing the equation above for the inverse is very susceptible to floating point errors. One remedy is to increase the floating point accuracy to that needed. However, there is a theorem that suggests a better approach. That theorem says that if you take those $1/\sigma_i$ that are really bad and replace them with zero and then do the equation above as if nothing is wrong, then you can get a much more accurate answer than *both* the SVD solution *and* a direct method; accurate in the sense that the residual:

$$r = |\mathbf{A}\mathbf{x} - \mathbf{b}|$$

will be much smaller than the numerical result yielded by a direct method or the ordinary SVD method. It takes some discretion to decide which $1/\sigma_i$ to kill, and whether you get the desirable accuracy in the residual. A recommended tolerance is to eliminate those σ_i such that

$$\sigma_i < \epsilon \cdot \max\{m, n\} \cdot \max\{\sigma_i\}$$

where m and n are the size of \mathbf{A} , and ϵ the floating point precision. The matrix \mathbf{A}^{-1} obtained by the expression above in which the small σ_i have been eliminated is called the *pseudoinverse* matrix. You can use the **pinv** command to compute the pseudoinverse using the SVD method. One way to invoke this command is by saying:

B = pinv(A);

in which case the tolerance mentioned above is used. Alternatively, you can specify your own tolerance tol by invoking the pinv command like this:

B = pinv(A,tol);

It is important to understand that the pseudoinverse matrix is *not* really the same as the inverse matrix. The point is that in an ill-conditioned problem, we are going to get a more accurate answer if we use the pseudoinverse, rather than if we attempt to compute the inverse and use that instead. If, in the worst case scenario, the residual we get by this method is still not good enough then your other option is to increase your floating point precision. To do this, assign the variable **eps** in matlab to your desired precision. For example, to get quad precision set:

eps = 1e-32;

When the condition number is infinite, that is when some $\sigma_i = 0$ exactly, the matrix has no inverse. Unfortunately, numerics being what it is, if you have an actual singular matrix, you probably won't see exact zeroes because of round-off error. So, it takes some discretion to decide whether you are dealing with a singular matrix or an ill-conditioned matrix as well.

Matlab has a special command for estimating condition numbers:

c = cond(A);

The cond will compute the condition number. There are two other algorithms for condition estimation that can be invoked by the commands condest and rcond. See the help pages for more information.

The orthogonal matrices \mathbf{U} and \mathbf{V} can also give us their share of information. If the *n* columns of \mathbf{A} are vectors spanning a vector space of interest, then the columns of \mathbf{U} will contain an *orthogonal* set of vectors spanning the same space. Nothing special so far, since you can do this with the QR decomposition too. The bonus is that with SVD you can detect whether the dimensionality of the vector space is the same as the amount of vectors that you use to span the space. If any zeroes (or nearly zeroes) occur in one of the σ_i then this means that the vector space was not in fact *n*-dimensional. To deal with that case, you just eliminate the columns in \mathbf{U} that correspond to the ill-behaved σ_i . The vectors in \mathbf{U} that remain *will be* an orthogonal basis for the vector space.

An equivalent way of stating the previous paragraph is to say that SVD can be used to determine the *rank* of the matrix **A**. Rank is the dimensionality of the vector space spanned by the columns of a matrix. ¹ We say that a square matrix $\mathbf{A} \in \mathcal{R}^{n \times n}$ is full rank if it has rank n.

¹it doesn't actually make a difference if you pick the rows of the matrix. A theorem tells you that you will get the same number, always

Many theorems in linear algebra apply only on matrices that are full-rank, so from the numerical perspective we want to have a way to diagnose matrices that are not full rank. SVD provides us with a method to do that.

In addition to rank, we can also determine the *null space* of a matrix $\mathbf{A} \in \mathcal{C}^{n \times m}$. The null space is defined to be

$$\operatorname{null}(\mathbf{A}) = \{\mathbf{x} \in \mathcal{C}^{m \times 1} : \mathbf{A}\mathbf{x} = \mathbf{0}\}$$

that is, the set of vectors \mathbf{x} for which $\mathbf{A}\mathbf{x}$ is zero. For non-singular matrices, the null-space consists only of $\mathbf{x} = \mathbf{0}$. For matrices of rank $(\mathbf{A}) = r < m$ the last m - r columns of \mathbf{V} give an orthonormal basis for the nullspace. Finally for matrices of rank $(\mathbf{A}) = r > m$ the null space is null $(\mathbf{A}) = \{\mathbf{0}\}$

These concepts become useful when you are trying to solve linear systems

$$Ax = b$$

in which $\mathbf{A} \in \mathcal{C}^{n \times m}$ is no-longer a square matrix. In such cases, if \mathbf{A} actually has a null space, to find the set of \mathbf{x} that satisfy the linear system, we find one particular solution \mathbf{x}_0 . Then full solution set becomes:

$$\{\mathbf{x} \in \mathcal{R}^{m \times 1} : \mathbf{A}\mathbf{x} = b\} = \{\mathbf{x} + \mathbf{x}_0 : \mathbf{x} \in \text{null}(\mathbf{A})\}$$

In practice, we don't care to know the full solution space. Instead we want to find the unique \mathbf{x} that minimizes the residual

$$r(\mathbf{x}) = |\mathbf{A}\mathbf{x} - \mathbf{b}|$$

The backslash operator will solve this problem. To find the \mathbf{x} that minimizes the residual do:

 $x = A \ ;$

Exercise 3 Write a matlab function which will accept a set of vectors spanning a linear space in the form of a matrix, and optionally a threshold for the σ_i . Your function should return an orthogonal set of vectors that span the same space, but take care to remove the vectors whose σ_i falls bellow the threshold.

5 Eigenvalue Problems

A completely different type of problem that shows up in many forms is the *eigenvalue problem*. Let $\mathbf{A} \in \mathcal{C}^{n \times n}$ be a square matrix, $\mathbf{x} \in \mathcal{C}^{n \times 1}$ be a vector and $\lambda \in \mathcal{C}$ be a complex number. We want to find the pairs (λ, \mathbf{x}) that satisfy the linear equation:

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

The set of λ for which corresponding **x** exist are the *eigenvalues* of the matrix. The **x** that correspond to each eigenvalue form the corresponding *eigenvector space*. Individual members of that space are called *eigenvectors*. Finding the eigenvalues, and then from these the eigenvectors is the problem at hand.

One approach to solving this problem is to find the eigenvalues first, and then from them, find the eigenvectors. To find the eigenvalues we use this theorem:

Theorem 5 Let $\mathbf{A} \in \mathcal{C}^{n \times n}$ and $\lambda \in \mathcal{C}$.

 λ is an eigenvalue of $\mathbf{A} \iff \det(\lambda \mathbf{I} - \mathbf{A}) = 0$

It turns out that if you expand that determinant, you obtain a polynomial

$$p(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = \sum_{k=1}^{n} a_k x^k$$

which is called the *characteristic polynomial*, so to find the eigenvalues we need find the roots of that polynomial. For matrices up to size n = 4 there are direct methods that will give you the solution. So for such matrices, the eigenvalue problem is trivial. For larger polynomials there are no direct methods, and in many cases there is no simpler way to solve polynomial equations except by reducing them to eigenvalue problems! In fact, it is quite common to solve even 3rd order and 4th order polynomials this way.

In Matlab we usually solve eigenvalue problems with the eig function. The call:

$$e = eig(A);$$

will return a vector containing the eigenvalues of A. The call:

[V,D] = eig(A);

produces a diagonal matrix D of eigenvalues and a full matrix V whose columns are the corresponding eigenvectors.

The grand strategy of all eigenvalue algorithms is based on the fact that the matrix $\mathbf{Z}^{-1}\mathbf{A}\mathbf{Z}$ has the same eigenvalues as \mathbf{A} for all non-singular \mathbf{Z} . What we want to do then is to apply the appropriate sequence of \mathbf{Z} matrices that will diagonalize our matrix \mathbf{A} . Then, the diagonal elements of the diagonal matrix will also be it's eigenvalues. Of course, this is easier said than done. In what follows, we will sketch out how this is done, and introduce you to all the related nifty Matlab functions. You can use these functions to operate on a lower level, and experiment with the eigenvalue algorithms more directly.

5.1 Hessenberg Forms

The first thing we want to do to our matrix \mathbf{A} is bring it to the so-called *Hessenberg Form*. The Hessenberg form of a matrix is zero bellow the first lower subdiagonal and non-zero everywhere else. The existence theorem for Hessenberg forms says that:

Theorem 6 If $\mathbf{A} \in \mathcal{C}^{n \times n}$ then there exists a unitary $\mathbf{P} \in \mathcal{C}^{n \times n}$ such that

$$\mathbf{P}^H \mathbf{A} \mathbf{P} = \mathbf{H}$$

where \mathbf{H} is such that

$$h_{ij} = 0, \forall (i,j) : i > j+1$$

The theoretical emphasis here is that we can bring our \mathbf{A} to this funky form by applying a sequence of *unitary* \mathbf{Z} matrices. In your numerical analysis course you will learn that this guarantees the numerical stability of these repeatitive transformations.

In Matlab, you can get this far by applying the hess function:

H = hess(A);

will return the matrix **H**. If you also want to look at **P**, call:

[P,H] = hess(A);

5.2 Schur Decompositions

The next step is to converge to the *Schur decomposition*. Here are the relevant existence theorems:

Theorem 7 If $\mathbf{A} \in \mathcal{C}^{n \times n}$ then there exists a unitary $\mathbf{Q} \in \mathcal{C}^{n \times n}$ such that

$$\mathbf{Q}^H \mathbf{A} \mathbf{Q} = \mathbf{T} = \mathbf{D} + \mathbf{N}$$

where $\mathbf{D} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ and $\mathbf{N} \in \mathcal{C}^{n \times n}$ is strictly upper triangular. Furthermore, \mathbf{Q} can be chosen so that the eigenvalues λ_i appear in any order along the diagonal.

This decomposition is called the *Complex Schur Form*. There is another one for real matrices:

Theorem 8 If $\mathbf{A} \in \mathcal{R}^{n \times n}$ then there exists an orthogonal $\mathbf{Q} \in \mathcal{R}^{n \times n}$ such that

$$\mathbf{Q}^{T}\mathbf{A}\mathbf{Q} = \begin{pmatrix} \mathbf{T}_{11} & \mathbf{T}_{12} & \cdots & \mathbf{T}_{1m} \\ 0 & \mathbf{T}_{22} & \cdots & \mathbf{T}_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{T}_{mm} \end{pmatrix}$$

where each \mathbf{T}_{ii} is either a 1 × 1 matrix which is an eigenvalue of \mathbf{A} or a 2 × 2 matrix whose eigenvalues are also eigenvalues of \mathbf{A} .

This one is called the *Real Schur Form*.

Matlab provides with a function called schur. The call

$$[Q,T] = schur(A)$$

will return the real schur form if the matrix is real, and the complex schur form if the matrix is complex. If you don't want the real schur form, then the function rsf2csf will convert the inputted real schur form to complex:

[Q,T] = rsf2csf(Q,T);

How do we get to Schur from Hessenberg form? The simplest way to do it is with the so called QR algorithm:

1. First of all, we get the Hessenberg form of A:

$$\mathbf{H}_0 = \mathbf{P}_0^T \mathbf{A} \mathbf{P}_0$$

2. Then we apply the following recurrence:

$$\begin{cases} \mathbf{H}_k = \mathbf{Q}_k \mathbf{R}_k & \text{QR decomposition} \\ \mathbf{H}_{k+1} = \mathbf{R}_k \mathbf{Q}_k \end{cases}$$

It can be proven that these repetive iterations are actually equivalent to applying unitary matrices for \mathbf{Z} and that they will take the Hessenberg form all the way to *Real Schur form*! In your numerical analysis course you will learn more details about the various algorithms that take you from Hessenberg to Schur. With Matlab you can actually experiment with many of these algorithms and see how they perform.

5.3 Balancing

Before applying the QR algorithm it is a good idea to *balance* the matrix. By balancing we rescale the matrix by transforming it to $\mathbf{D}^{-1}\mathbf{A}\mathbf{D}$ where \mathbf{D} is a *diagonal* matrix so that it it has approximately equal row and column norms. In matlab, you can balance a matrix with the **balance** function:

B = balance(A);

While experimenting with variations of the QR algorithm, you can see what happens as you include or not include balancing.

5.4 Miscellaneous

With symmetric matrices, the following miracles happen: the eigenvalues are real, the Hessenberg form is a tridiagonal matrix, and the QR algorithm doesn't merely take us to a real Schur decomposition, but it completely diagonalizes our matrix! An even more exciting development is that for square symmetric matrices the Schur decomposition and the SVD decomposition *are the same thing!* From this fact, plus a few theoretical results, one can obtain an algorithm for computing the SVD by reducing it to a symmetric eigenvalue problem. The details of this are described in *"Matrix Computations"* by Gene Golub.

Another application of eigenvalue problems is solving polynomial equations. As you may know, direct methods for finding polynomial roots, exist only for polynomials up to 4th degree. Let

$$P(x) = \sum_{k=1}^{n-1} a_k x^k + x^n$$

be your polynomial. Form the matrix:

$$\mathbf{C} = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}$$

The eigenvalues of **C** are the roots of P(x). **C** is called the *companion matrix* of the polynomial. In matlab, if an array **P** holds the coefficients of a polynomial with **p(1)** being the highest order coefficient, the companion matrix can be retrieved by the **compan** function.

A = compan(p);

Of course Matlab, in it's never-ending efforts to make this all easier for the user, provides you with a function called **roots** that you can use to do all this automatically. So, if you describe your polynomial with an array **p** such that

$$y = p(1)*x^d + p(2)*x^{(d-1)} + \dots + p(d)*x + p(d+1)$$

then the roots can be obtained by simply saying:

You will obtain an array of roots in **r**. To verify your roots, you can use the **polyval** function to evaluate the polynomial. Just call:

where p is the array with the polynomial and x is a scalar.

Finally, Matlab has commands that allow the user to solve more generalized eigenvalue problems. One such problem is the following. Given two square matrices $\mathbf{A}, \mathbf{B} \in \mathcal{C}^{n \times n}$ find $\lambda \in \mathcal{C}$ and $\mathbf{x} \in \mathcal{C}^{n \times 1}$ such that

$$Ax = \lambda Bx.$$

To solve this problem call:

```
[V,L] = eig(A,B); % eigenvectors -> V, eigenvalues -> L
l = eig(A,B); % eigenvalues -> l
```

In the first version the eigenvectors are returned as columns of V and the eigenvalues as diagonals of L. In the second version an array of the eigenvalues is returned.

More on linear ODE systems

LINEAR SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

ELEFTHERIOS GKIOULEKAS

The purpose of this handout is to summarize the theory of the matrix exponential. You may note that this is a different approach from the one proposed in your textbook. The main motivation for preferring the matrix exponential is that it provides a unified theory that can solve *all* problems, including all *forced* problems. For examples, see Bronson [1]. A detailed exposition of the theory is given by Apostol [2].

We want to solve a linear system of ordinary differential equations of the form

(1)
$$\frac{dx_a}{dt} = \sum_{b=1}^n A_{ab} x_b + f_b,$$

where f_b is a known forcing function, and $\mathbf{A} = [A_{ab}]$ is a matrix of constant coefficients. The essential result of the matrix exponentials theory is that the solution is given by

(2)
$$\mathbf{x}(t) = \exp(t\mathbf{A})\mathbf{x}(0) + \exp(t\mathbf{A})\int_0^t \exp(-s\mathbf{A})\mathbf{f}(s),$$

where $\mathbf{x}(0)$ is the initial condition, which we know. The first term represents the homogeneous solution, whereas the second term represents the particular solution. The matrix exponential is given by

(3)
$$e^{\mathbf{A}} = \exp(\mathbf{A}) = \sum_{n=0}^{+\infty} \frac{\mathbf{A}^n}{n!}.$$

Note that this is a generalization of the Taylor series expansion of the standard exponential function. Naturally, $e^{\mathbf{A}}$ is a $n \times n$ matrix. The problem at hand is to evaluate the matrix exponential without having to evaluate an infinite sum, which is not practical.

1. EIGENVALUES AND EIGENVECTORS

The evaluation of the matrix exponential requires the use of the concept of eigenvalues and eigenvectors. We say that a matrix \mathbf{A} has eigenvalue λ with eigenvector \mathbf{v} , if the equation $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ is satisfied. To find the eigenvalues, you solve the following equation

(4)
$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

Then, you substitute the numbers that you find to $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$ and solve that to find the corresponding eigenvector.

The geometric interpretation is that the eigenvector represents a direction such that any vector that points towards that direction (or in the opposite direction) will not be *rotated* when you apply the matrix on it. It will only stretch or shrink, and the corresponding eigenvalue will tell you how much. If all the eigenvalues are distinct, then you're dealing with a very nice matrix, because you will also have corresponding eigenvectors that are orthogonal to each other. This means that every other vector can be decomposed as

(5)
$$\mathbf{x} = \sum_{a=1}^{n} c_a \mathbf{v}_a$$

where the numbers c_a are the coordinates of the vector \mathbf{x} using the eigenvectors \mathbf{v}_a of the matrix \mathbf{A} as a frame of reference. It follows that when you apply the matrix to an arbitrary vector, all that happens is that you're multiplying its coordinates with certain constant numbers, the eigenvalues λ_a , regardless of who this vector is. This only holds however *if you use the eigenvectors to define the coordinate system*. Furthermore, this may fail if you have repeated eigenvalues.

2. MATRIX EXPONENTIAL

The most convenient technique for evaluating the matrix exponential was invented by Putzer. It is based on the following two claims. First, there will always exist numbers a_k such that the matrix exponential $e^{\mathbf{A}}$ can be written as a finite sum given by

(6)
$$e^{\mathbf{A}} = \sum_{k=0}^{n-1} a_k \mathbf{A}^k.$$

These numbers can be calculated by using the following claim: Suppose that we define a polynomial given by

(7)
$$p(x) = \sum_{k=0}^{n-1} a_k x^k.$$

Then, suppose that you know all the eigenvalues of the matrix **A**. Then, for each eigenvalue λ you may obtain one equation as follows.

(8)
$$\lambda \text{ simple eigenvalue} \Longrightarrow e^{\lambda} = p(\lambda)$$
$$\lambda \text{ double eigenvalue} \Longrightarrow e^{\lambda} = p(\lambda) = p'(\lambda)$$
$$\lambda \text{ triple eigenvalue} \Longrightarrow e^{\lambda} = p(\lambda) = p'(\lambda) = p''(\lambda)$$

etc. Solving these equations together as a system, will give you the numbers a_k .

This is a straightforward calculation that always works. However, that doesn't mean that you will always have to do it. In certain cases, we can work it out in general and derive special results that will allow you to circumvent the need to solve the system of linear equations.

For example, if your matrix is nice enough to have n distinct eigenvalues, then the matrix exponential can be calculated from the following expressions.

(9)
$$\exp(t\mathbf{A}) = \sum_{k=1}^{n} e^{\lambda_k t} \mathbf{L}_k$$
$$\mathbf{L}_k = \prod_{j \in [n] - \{k\}} \frac{1}{\lambda_k - \lambda_j} (\mathbf{A} - \lambda_j \mathbf{I})$$

This result by itself covers most circumstances.

Most useful is the 2×2 case. In this case, we distinguish between two possibilities: that the eigenvalues are distinct, or that they are equal. Suppose that you have found the eigenvalues, and they are λ_1, λ_2 . Then, if $\lambda_1 = \lambda_2 = \lambda$ then

(10)
$$\exp(t\mathbf{A}) = e^{\lambda t} (\mathbf{I} + t(\mathbf{A} - \lambda \mathbf{I}))$$

If $\lambda_1 \neq \lambda_2$ then

(11)
$$\exp(t\mathbf{A}) = \frac{\mathbf{A} - \lambda_2 \mathbf{I}}{\lambda_1 - \lambda_2} e^{\lambda_1 t} + \frac{\mathbf{A} - \lambda_1 \mathbf{I}}{\lambda_2 - \lambda_1} e^{\lambda_2 t}$$
$$= \frac{\lambda_1 e^{\lambda_2 t} - \lambda_2 e^{\lambda_1 t}}{\lambda_1 - \lambda_2} \mathbf{I} + \frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2} \mathbf{A}$$

This result is sufficient to solve all 2×2 problems. Keep in mind, that when you know the matrix exponential, that allows you to write down solutions for any kind of forcing functions.

3. The eigenvector method

Now let us consider the method used by the textbook. This method is expedient only when all the eigenvalues are distinct *and* you do not have forcing in your problem. It is also conceptually interesting.

Suppose that \mathbf{v} is an eigenvector of the matrix \mathbf{A} with eigenvalue λ . What happens if you apply the matrix $e^{t\mathbf{A}}$ on the eigenvector \mathbf{v} instead? Using the definition of the matrix exponential, you may show that

(12)
$$\exp(t\mathbf{A})\mathbf{v} = e^{\lambda t}\mathbf{v}.$$

Suppose that you want to solve the unforced problem

(13)
$$\frac{dx_a}{dt} = \sum_{b=1}^n A_{ab} x_b$$

The key is to write the initial condition as a linear combination of the eigenvectors

(14)
$$\mathbf{x}(0) = \sum_{a=1}^{n} c_a \mathbf{v}_a$$

Using this, we may calculate the solution as follows:

(15)
$$\mathbf{x}(t) = \exp(t\mathbf{A})\mathbf{x}(0) = \exp(t\mathbf{A})\sum_{a=1}^{n} c_a \mathbf{v}_a$$
$$= \sum_{a=1}^{n} c_a \exp(t\mathbf{A})\mathbf{v}_a = \sum_{a=1}^{n} c_a \exp(\lambda_a t)\mathbf{v}_a$$

What you get is the method of the textbook. Did you see how the matrix exponential disappeared? The idea is that *if* you don't have forcing, and *if* the eigenvalues *are* distinct, then you can circumvent the computation of the matrix exponential by evaluating the *eigenvectors* instead, which is an easier computation.

Don't forget that it is easy to diagnose whether your solutions are correct by substituting them back to the original equations.

References

- [1] R. Bronson. Differential Equations. Scaum Outline Series McGrew-Hill, New York, 1994.
- [2] T. M. Apostol. Calculus. John Wiley & Sons, New York, 1969.

References

The following references were consulted during the preparation of these lecture notes.

- (1) A. Pistofides (1992), "Algebra IV", unpublished lecture notes.
- (2) K. Gkatzoulis and M. Karamavrou (1988), "Linear Algebra", Ekdoseis ZHTH.
- (3) T.M. Apostol (1969), "Calculus, Vol. 2", Wiley.
- (4) J. Aldous and R.J. Wilson (2004), "Graphs and Applications", Springer.
- (5) J.A. Bondy and U.S.R. Murty (1976), "Graph Theory with Applications", Elsevier Science Publishing.

Lecture notes by Pistofides are available for download at

http://www.math.utpa.edu/lf/OGS/pistofides.html