## Homework 04: Asymptotic methods and 1d dynamical systems

1. Consider the differential equation

$$x^{2}u''(x) + 2bxu'(x) + [b(b-1) - x^{-a}]u(x) = 0$$

with  $a \in (0, +\infty)$  and  $b \in \mathbb{R}$ .

- (a) Show that the substitution  $y(x) = x^b u(x)$  reduces it to the equivalent equation  $x^{a+2}y''(x) = y(x)$ .
- (b) Find the leading order asymptotic solution for u(x) in the limit  $x \to 0^+$ .
- 2. Show that:
  - (a)  $f(x) = \sin x$  is Lipschitz continuous on  $\mathbb{R}$  using the definition.
  - (b)  $f(x) = x^a$  with  $a \in (0,1)$  is not Lipschitz continuous on  $(0,+\infty)$ .

(*Hint*: use the inequality  $\forall x \in \mathbb{R} : |\sin x| \le |x|$ .)

3. Consider the dynamical system

$$\begin{cases} dp/dt = f(p,q) \\ dq/dt = g(p,q) \end{cases}$$

with

$$f(p,q) = \frac{\partial H(p,q)}{\partial q}$$
 and  $g(p,q) = -\frac{\partial H(p,q)}{\partial p}$ 

with H(p,q) the *Hamiltonian* of the system. Assume that  $(p_0,q_0)$  is a fixed point of the dynamical system and assume that it satisfies the condition

$$\forall (p,q) \in A - \{(p_0, q_0)\} : H(p,q) > H(p_0, q_0) \tag{1}$$

with A an open set that contains  $(p_0, q_0)$ . Then, show that the fixed point  $(p_0, q_0)$  is Lyapunov stable.

- 4. Find all fixed points of the dynamical system  $dx/dt = 2\sin x + \sin(2x)$  and determine their stability.
- 5. Show that the dynamical system  $dx/dt = \mu x \ln(1+x)$  undergoes a transcritical bifurcation at a unique bifurcation point.